File size: 5,771 Bytes
0c18694 196c45c 0c18694 196c45c 0c18694 196c45c 0c18694 02ad4be 196c45c 56ec32c 196c45c 1436dfb 196c45c 1436dfb 196c45c 0c18694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
license: mit
datasets:
- BothBosu/scam-dialogue
- BothBosu/Scammer-Conversation
- BothBosu/youtube-scam-conversations
- BothBosu/multi-agent-scam-conversation
- BothBosu/single-agent-scam-conversations
- an19352/scam-baiting-conversations
- scambaitermailbox/scambaiting_dataset
language:
- en
metrics:
- bertscore
- perplexity
- f1
- rouge
- distinct-n
- dialogrpt
base_model:
- meta-llama/LlamaGuard-7b
- meta-llama/Meta-Llama-Guard-2-8B
- meta-llama/Llama-Guard-3-8B
- OpenSafetyLab/MD-Judge-v0.1
pipeline_tag: text-generation
library_name: transformers
---
# Model Card: AI-in-the-Loop for Real-Time Scam Detection & Scam-Baiting
This repository contains **instruction-tuned large language models (LLMs)** designed for **real-time scam detection, conversational scam-baiting, and privacy-preserving federated learning**.
The models are trained and evaluated as part of the paper:
**[AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning](https://supreme-lab.github.io/ai-in-the-loop/)**
---
## Model Details
- **Developed by:** Supreme Lab, University of Texas at El Paso & Southern Illinois University Carbondale
- **Funded by:** U.S. National Science Foundation (Award No. 2451946) and U.S. Nuclear Regulatory Commission (Award No. 31310025M0012)
- **Shared by:** Ismail Hossain, Sai Puppala, Sajedul Talukder, Md Jahangir Alam
- **Model type:** Multi-task instruction-tuned LLMs (classification + safe text generation)
- **Languages:** English
- **License:** MIT
- **Finetuned from:** LlamaGuard family & MD-Judge
### Model Sources
- **Repository:** [GitHub – supreme-lab/ai-in-the-loop](https://github.com/supreme-lab/ai-in-the-loop)
- **Hugging Face:** [supreme-lab/ai-in-the-loop](https://huggingface.co/supreme-lab/ai-in-the-loop)
- **Paper:** [ArXiv version](#)
---
## Uses
### Direct Use
- Real-time scam classification (scam vs. non-scam conversations)
- Conversational **scam-baiting** to waste scammer time safely
- **PII risk scoring** to filter unsafe outputs
### Downstream Use
- Integration into messaging platforms for scam prevention
- Benchmarks for **AI safety alignment** in adversarial contexts
- Research in **federated privacy-preserving LLMs**
### Out-of-Scope Use
- Should **not** be used as a replacement for law enforcement tools
- Should **not** be deployed without safety filters and human-in-the-loop monitoring
- Not intended for **financial or medical decision-making**
---
## Bias, Risks, and Limitations
- Models may **over-engage with scammers** in rare cases
- Possible **false positives** in benign conversations
- Cultural/linguistic bias: trained primarily on **English data**
- Risk of **hallucination** when generating long responses
### Recommendations
- Always deploy with **safety thresholds (δ, θ1, θ2)**
- Use in **controlled environments** first (research, simulations)
- Extend to **multilingual settings** before real-world deployment
---
## How to Get Started
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Replase the <x> with 2 or 3 and Nothing (when it is llama-guard-multi-task)
model_id = "supreme-lab/ai-in-the-loop/llama-guard-<x>-multi-task"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("Scammer: Hello, I need your SSN.", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## Training Details
### Training Data
- **Classification:** SSD, SSC, SASC, MASC (synthetic scam/non-scam dialogues)
- **Generation:** SBC (254 real scam-baiting convs), ASB (>37k msgs), YTSC (YouTube scam transcriptions)
- **Auxiliary:** ConvAI, DailyDialog (engagement), HarmfulQA, Microsoft PII dataset
### Training Procedure
- **Fine-tuning setup:**
- 3 epochs, batch size = 8
- LoRA rank = 8, α = 16
- Mixed precision (bf16)
- Optimizer: AdamW
- **Federated Learning (FL):**
- Simulated 10 clients, 30 rounds FedAvg
- Optional **Differential Privacy** (noise multipliers: 0.1, 0.8)
---
## Evaluation
### Metrics
- **Classification:** F1, AUPRC, FPR, FNR
- **Generation:** Perplexity, Distinct-1/2, DialogRPT, BERTScore, ROUGE-L, HarmBench
### Results
- **Classification:** BiGRU/BiLSTM > 0.99 F1, RoBERTa competitive
- **Instruction-tuned LLMs:** MD-Judge best overall (F1 = 0.89+), LlamaGuard3 strong for moderation
- **Generation:** MD-Judge achieved **lowest perplexity (22.3)**, **highest engagement (0.79)**, **96% safety compliance** in human evals
---
## Environmental Impact
- **Hardware:** NVIDIA H100 GPUs
- **Training Time:** ~30 hrs across models
- **Federated Setup:** 10 simulated clients, 30 rounds
---
## Technical Specifications
- **Architecture:** Instruction-tuned transformer (decoder-only)
- **Objective:** Multi-task (classification, risk scoring, safe generation)
---
## Citation
If you use these models, please cite our paper:
```bibtex
@article{hossain2025aiintheloop,
title={AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning},
author={Hossain, Ismail; Puppala, Sai; Alam, Md Jahangir; and Talukder, Sajedul},
journal={[arXiv preprint arXiv:2509.05362](https://arxiv.org/abs/2509.05362)},
year={2025}
}
```
---
## Contact
- **Authors:** [email protected], [email protected], [email protected]
- **Lab:** [Supreme Lab](https://www.cs.utep.edu/stalukder/supremelab/index.html)
- **Personal Web:** [https://ismail102.github.io/](https://ismail102.github.io/)
--- |