Create inference.py
Browse files- inference.py +390 -0
    	
        inference.py
    ADDED
    
    | @@ -0,0 +1,390 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Any, Dict, Optional
         | 
| 2 | 
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel
         | 
| 3 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import numpy
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torch.nn as nn
         | 
| 8 | 
            +
            import torch.utils.checkpoint
         | 
| 9 | 
            +
            import torch.distributed
         | 
| 10 | 
            +
            import transformers
         | 
| 11 | 
            +
            from collections import OrderedDict
         | 
| 12 | 
            +
            from PIL import Image
         | 
| 13 | 
            +
            from torchvision import transforms
         | 
| 14 | 
            +
            from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import diffusers
         | 
| 17 | 
            +
            from diffusers import (
         | 
| 18 | 
            +
                AutoencoderKL,
         | 
| 19 | 
            +
                DDPMScheduler,
         | 
| 20 | 
            +
                DiffusionPipeline,
         | 
| 21 | 
            +
                EulerAncestralDiscreteScheduler,
         | 
| 22 | 
            +
                UNet2DConditionModel,
         | 
| 23 | 
            +
                ImagePipelineOutput
         | 
| 24 | 
            +
            )
         | 
| 25 | 
            +
            from diffusers.image_processor import VaeImageProcessor
         | 
| 26 | 
            +
            from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
         | 
| 27 | 
            +
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def to_rgb_image(maybe_rgba: Image.Image):
         | 
| 31 | 
            +
                if maybe_rgba.mode == 'RGB':
         | 
| 32 | 
            +
                    return maybe_rgba
         | 
| 33 | 
            +
                elif maybe_rgba.mode == 'RGBA':
         | 
| 34 | 
            +
                    rgba = maybe_rgba
         | 
| 35 | 
            +
                    img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
         | 
| 36 | 
            +
                    img = Image.fromarray(img, 'RGB')
         | 
| 37 | 
            +
                    img.paste(rgba, mask=rgba.getchannel('A'))
         | 
| 38 | 
            +
                    return img
         | 
| 39 | 
            +
                else:
         | 
| 40 | 
            +
                    raise ValueError("Unsupported image type.", maybe_rgba.mode)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            class ReferenceOnlyAttnProc(torch.nn.Module):
         | 
| 44 | 
            +
                def __init__(
         | 
| 45 | 
            +
                    self,
         | 
| 46 | 
            +
                    chained_proc,
         | 
| 47 | 
            +
                    enabled=False,
         | 
| 48 | 
            +
                    name=None
         | 
| 49 | 
            +
                ) -> None:
         | 
| 50 | 
            +
                    super().__init__()
         | 
| 51 | 
            +
                    self.enabled = enabled
         | 
| 52 | 
            +
                    self.chained_proc = chained_proc
         | 
| 53 | 
            +
                    self.name = name
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def __call__(
         | 
| 56 | 
            +
                    self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
         | 
| 57 | 
            +
                    mode="w", ref_dict: dict = None, is_cfg_guidance = False
         | 
| 58 | 
            +
                ) -> Any:
         | 
| 59 | 
            +
                    if encoder_hidden_states is None:
         | 
| 60 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 61 | 
            +
                    if self.enabled and is_cfg_guidance:
         | 
| 62 | 
            +
                        res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
         | 
| 63 | 
            +
                        hidden_states = hidden_states[1:]
         | 
| 64 | 
            +
                        encoder_hidden_states = encoder_hidden_states[1:]
         | 
| 65 | 
            +
                    if self.enabled:
         | 
| 66 | 
            +
                        if mode == 'w':
         | 
| 67 | 
            +
                            ref_dict[self.name] = encoder_hidden_states
         | 
| 68 | 
            +
                        elif mode == 'r':
         | 
| 69 | 
            +
                            encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
         | 
| 70 | 
            +
                        elif mode == 'm':
         | 
| 71 | 
            +
                            encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
         | 
| 72 | 
            +
                        else:
         | 
| 73 | 
            +
                            assert False, mode
         | 
| 74 | 
            +
                    res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
         | 
| 75 | 
            +
                    if self.enabled and is_cfg_guidance:
         | 
| 76 | 
            +
                        res = torch.cat([res0, res])
         | 
| 77 | 
            +
                    return res
         | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
            class RefOnlyNoisedUNet(torch.nn.Module):
         | 
| 81 | 
            +
                def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
         | 
| 82 | 
            +
                    super().__init__()
         | 
| 83 | 
            +
                    self.unet = unet
         | 
| 84 | 
            +
                    self.train_sched = train_sched
         | 
| 85 | 
            +
                    self.val_sched = val_sched
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    unet_lora_attn_procs = dict()
         | 
| 88 | 
            +
                    for name, _ in unet.attn_processors.items():
         | 
| 89 | 
            +
                        if torch.__version__ >= '2.0':
         | 
| 90 | 
            +
                            default_attn_proc = AttnProcessor2_0()
         | 
| 91 | 
            +
                        elif is_xformers_available():
         | 
| 92 | 
            +
                            default_attn_proc = XFormersAttnProcessor()
         | 
| 93 | 
            +
                        else:
         | 
| 94 | 
            +
                            default_attn_proc = AttnProcessor()
         | 
| 95 | 
            +
                        unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
         | 
| 96 | 
            +
                            default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
         | 
| 97 | 
            +
                        )
         | 
| 98 | 
            +
                    unet.set_attn_processor(unet_lora_attn_procs)
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def __getattr__(self, name: str):
         | 
| 101 | 
            +
                    try:
         | 
| 102 | 
            +
                        return super().__getattr__(name)
         | 
| 103 | 
            +
                    except AttributeError:
         | 
| 104 | 
            +
                        return getattr(self.unet, name)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
         | 
| 107 | 
            +
                    if is_cfg_guidance:
         | 
| 108 | 
            +
                        encoder_hidden_states = encoder_hidden_states[1:]
         | 
| 109 | 
            +
                        class_labels = class_labels[1:]
         | 
| 110 | 
            +
                    self.unet(
         | 
| 111 | 
            +
                        noisy_cond_lat, timestep,
         | 
| 112 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 113 | 
            +
                        class_labels=class_labels,
         | 
| 114 | 
            +
                        cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
         | 
| 115 | 
            +
                        **kwargs
         | 
| 116 | 
            +
                    )
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                def forward(
         | 
| 119 | 
            +
                    self, sample, timestep, encoder_hidden_states, class_labels=None,
         | 
| 120 | 
            +
                    *args, cross_attention_kwargs,
         | 
| 121 | 
            +
                    down_block_res_samples=None, mid_block_res_sample=None,
         | 
| 122 | 
            +
                    **kwargs
         | 
| 123 | 
            +
                ):
         | 
| 124 | 
            +
                    cond_lat = cross_attention_kwargs['cond_lat']
         | 
| 125 | 
            +
                    is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
         | 
| 126 | 
            +
                    noise = torch.randn_like(cond_lat)
         | 
| 127 | 
            +
                    if self.training:
         | 
| 128 | 
            +
                        noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
         | 
| 129 | 
            +
                        noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
         | 
| 130 | 
            +
                    else:
         | 
| 131 | 
            +
                        noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
         | 
| 132 | 
            +
                        noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
         | 
| 133 | 
            +
                    ref_dict = {}
         | 
| 134 | 
            +
                    self.forward_cond(
         | 
| 135 | 
            +
                        noisy_cond_lat, timestep,
         | 
| 136 | 
            +
                        encoder_hidden_states, class_labels,
         | 
| 137 | 
            +
                        ref_dict, is_cfg_guidance, **kwargs
         | 
| 138 | 
            +
                    )
         | 
| 139 | 
            +
                    weight_dtype = self.unet.dtype
         | 
| 140 | 
            +
                    return self.unet(
         | 
| 141 | 
            +
                        sample, timestep,
         | 
| 142 | 
            +
                        encoder_hidden_states, *args,
         | 
| 143 | 
            +
                        class_labels=class_labels,
         | 
| 144 | 
            +
                        cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
         | 
| 145 | 
            +
                        down_block_additional_residuals=[
         | 
| 146 | 
            +
                            sample.to(dtype=weight_dtype) for sample in down_block_res_samples
         | 
| 147 | 
            +
                        ] if down_block_res_samples is not None else None,
         | 
| 148 | 
            +
                        mid_block_additional_residual=(
         | 
| 149 | 
            +
                            mid_block_res_sample.to(dtype=weight_dtype)
         | 
| 150 | 
            +
                            if mid_block_res_sample is not None else None
         | 
| 151 | 
            +
                        ),
         | 
| 152 | 
            +
                        **kwargs
         | 
| 153 | 
            +
                    )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
             | 
| 156 | 
            +
            def scale_latents(latents):
         | 
| 157 | 
            +
                latents = (latents - 0.22) * 0.75
         | 
| 158 | 
            +
                return latents
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            def unscale_latents(latents):
         | 
| 162 | 
            +
                latents = latents / 0.75 + 0.22
         | 
| 163 | 
            +
                return latents
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            def scale_image(image):
         | 
| 167 | 
            +
                image = image * 0.5 / 0.8
         | 
| 168 | 
            +
                return image
         | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
            def unscale_image(image):
         | 
| 172 | 
            +
                image = image / 0.5 * 0.8
         | 
| 173 | 
            +
                return image
         | 
| 174 | 
            +
             | 
| 175 | 
            +
             | 
| 176 | 
            +
            class DepthControlUNet(torch.nn.Module):
         | 
| 177 | 
            +
                def __init__(self, unet: RefOnlyNoisedUNet) -> None:
         | 
| 178 | 
            +
                    super().__init__()
         | 
| 179 | 
            +
                    self.unet = unet
         | 
| 180 | 
            +
                    self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
         | 
| 181 | 
            +
                    DefaultAttnProc = AttnProcessor2_0
         | 
| 182 | 
            +
                    if is_xformers_available():
         | 
| 183 | 
            +
                        DefaultAttnProc = XFormersAttnProcessor
         | 
| 184 | 
            +
                    self.controlnet.set_attn_processor(DefaultAttnProc())
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def __getattr__(self, name: str):
         | 
| 187 | 
            +
                    try:
         | 
| 188 | 
            +
                        return super().__getattr__(name)
         | 
| 189 | 
            +
                    except AttributeError:
         | 
| 190 | 
            +
                        return getattr(self.unet, name)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
         | 
| 193 | 
            +
                    cross_attention_kwargs = dict(cross_attention_kwargs)
         | 
| 194 | 
            +
                    control_depth = cross_attention_kwargs.pop('control_depth')
         | 
| 195 | 
            +
                    down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 196 | 
            +
                        sample,
         | 
| 197 | 
            +
                        timestep,
         | 
| 198 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 199 | 
            +
                        controlnet_cond=control_depth,
         | 
| 200 | 
            +
                        return_dict=False,
         | 
| 201 | 
            +
                    )
         | 
| 202 | 
            +
                    return self.unet(
         | 
| 203 | 
            +
                        sample,
         | 
| 204 | 
            +
                        timestep,
         | 
| 205 | 
            +
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 206 | 
            +
                        down_block_res_samples=down_block_res_samples,
         | 
| 207 | 
            +
                        mid_block_res_sample=mid_block_res_sample,
         | 
| 208 | 
            +
                        cross_attention_kwargs=cross_attention_kwargs
         | 
| 209 | 
            +
                    )
         | 
| 210 | 
            +
             | 
| 211 | 
            +
             | 
| 212 | 
            +
            class ModuleListDict(torch.nn.Module):
         | 
| 213 | 
            +
                def __init__(self, procs: dict) -> None:
         | 
| 214 | 
            +
                    super().__init__()
         | 
| 215 | 
            +
                    self.keys = sorted(procs.keys())
         | 
| 216 | 
            +
                    self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def __getitem__(self, key):
         | 
| 219 | 
            +
                    return self.values[self.keys.index(key)]
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            class SuperNet(torch.nn.Module):
         | 
| 223 | 
            +
                def __init__(self, state_dict: Dict[str, torch.Tensor]):
         | 
| 224 | 
            +
                    super().__init__()
         | 
| 225 | 
            +
                    state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
         | 
| 226 | 
            +
                    self.layers = torch.nn.ModuleList(state_dict.values())
         | 
| 227 | 
            +
                    self.mapping = dict(enumerate(state_dict.keys()))
         | 
| 228 | 
            +
                    self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    # .processor for unet, .self_attn for text encoder
         | 
| 231 | 
            +
                    self.split_keys = [".processor", ".self_attn"]
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # we add a hook to state_dict() and load_state_dict() so that the
         | 
| 234 | 
            +
                    # naming fits with `unet.attn_processors`
         | 
| 235 | 
            +
                    def map_to(module, state_dict, *args, **kwargs):
         | 
| 236 | 
            +
                        new_state_dict = {}
         | 
| 237 | 
            +
                        for key, value in state_dict.items():
         | 
| 238 | 
            +
                            num = int(key.split(".")[1])  # 0 is always "layers"
         | 
| 239 | 
            +
                            new_key = key.replace(f"layers.{num}", module.mapping[num])
         | 
| 240 | 
            +
                            new_state_dict[new_key] = value
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                        return new_state_dict
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    def remap_key(key, state_dict):
         | 
| 245 | 
            +
                        for k in self.split_keys:
         | 
| 246 | 
            +
                            if k in key:
         | 
| 247 | 
            +
                                return key.split(k)[0] + k
         | 
| 248 | 
            +
                        return key.split('.')[0]
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    def map_from(module, state_dict, *args, **kwargs):
         | 
| 251 | 
            +
                        all_keys = list(state_dict.keys())
         | 
| 252 | 
            +
                        for key in all_keys:
         | 
| 253 | 
            +
                            replace_key = remap_key(key, state_dict)
         | 
| 254 | 
            +
                            new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
         | 
| 255 | 
            +
                            state_dict[new_key] = state_dict[key]
         | 
| 256 | 
            +
                            del state_dict[key]
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    self._register_state_dict_hook(map_to)
         | 
| 259 | 
            +
                    self._register_load_state_dict_pre_hook(map_from, with_module=True)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
             | 
| 262 | 
            +
            class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
         | 
| 263 | 
            +
                tokenizer: transformers.CLIPTokenizer
         | 
| 264 | 
            +
                text_encoder: transformers.CLIPTextModel
         | 
| 265 | 
            +
                vision_encoder: transformers.CLIPVisionModelWithProjection
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                feature_extractor_clip: transformers.CLIPImageProcessor
         | 
| 268 | 
            +
                unet: UNet2DConditionModel
         | 
| 269 | 
            +
                scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                vae: AutoencoderKL
         | 
| 272 | 
            +
                ramping: nn.Linear
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                feature_extractor_vae: transformers.CLIPImageProcessor
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                depth_transforms_multi = transforms.Compose([
         | 
| 277 | 
            +
                    transforms.ToTensor(),
         | 
| 278 | 
            +
                    transforms.Normalize([0.5], [0.5])
         | 
| 279 | 
            +
                ])
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                def __init__(
         | 
| 282 | 
            +
                    self,
         | 
| 283 | 
            +
                    vae: AutoencoderKL,
         | 
| 284 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 285 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 286 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 287 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 288 | 
            +
                    vision_encoder: transformers.CLIPVisionModelWithProjection,
         | 
| 289 | 
            +
                    feature_extractor_clip: CLIPImageProcessor, 
         | 
| 290 | 
            +
                    feature_extractor_vae: CLIPImageProcessor,
         | 
| 291 | 
            +
                    ramping_coefficients: Optional[list] = None,
         | 
| 292 | 
            +
                    safety_checker=None,
         | 
| 293 | 
            +
                ):
         | 
| 294 | 
            +
                    DiffusionPipeline.__init__(self)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    self.register_modules(
         | 
| 297 | 
            +
                        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
         | 
| 298 | 
            +
                        unet=unet, scheduler=scheduler, safety_checker=None,
         | 
| 299 | 
            +
                        vision_encoder=vision_encoder,
         | 
| 300 | 
            +
                        feature_extractor_clip=feature_extractor_clip,
         | 
| 301 | 
            +
                        feature_extractor_vae=feature_extractor_vae
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
                    self.register_to_config(ramping_coefficients=ramping_coefficients)
         | 
| 304 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 305 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def prepare(self):
         | 
| 308 | 
            +
                    train_sched = DDPMScheduler.from_config(self.scheduler.config)
         | 
| 309 | 
            +
                    if isinstance(self.unet, UNet2DConditionModel):
         | 
| 310 | 
            +
                        self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                def add_controlnet(self):
         | 
| 313 | 
            +
                    self.unet = DepthControlUNet(self.unet)
         | 
| 314 | 
            +
                    return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                def encode_condition_image(self, image: torch.Tensor):
         | 
| 317 | 
            +
                    image = self.vae.encode(image).latent_dist.sample()
         | 
| 318 | 
            +
                    return image
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                @torch.no_grad()
         | 
| 321 | 
            +
                def __call__(
         | 
| 322 | 
            +
                    self,
         | 
| 323 | 
            +
                    image: Image.Image = None,
         | 
| 324 | 
            +
                    prompt = "",
         | 
| 325 | 
            +
                    *args,
         | 
| 326 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 327 | 
            +
                    guidance_scale=4.0,
         | 
| 328 | 
            +
                    depth_image: Image.Image = None,
         | 
| 329 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 330 | 
            +
                    width=640,
         | 
| 331 | 
            +
                    height=960,
         | 
| 332 | 
            +
                    num_inference_steps=28,
         | 
| 333 | 
            +
                    return_dict=True,
         | 
| 334 | 
            +
                    **kwargs
         | 
| 335 | 
            +
                ):
         | 
| 336 | 
            +
                    self.prepare()
         | 
| 337 | 
            +
                    if image is None:
         | 
| 338 | 
            +
                        raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
         | 
| 339 | 
            +
                    assert not isinstance(image, torch.Tensor)
         | 
| 340 | 
            +
                    image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
         | 
| 341 | 
            +
                    image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
         | 
| 342 | 
            +
                    if depth_image is not None and hasattr(self.unet, "controlnet"):
         | 
| 343 | 
            +
                        depth_image = self.depth_transforms_multi(depth_image).to(
         | 
| 344 | 
            +
                            device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
         | 
| 345 | 
            +
                        )
         | 
| 346 | 
            +
                    image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
         | 
| 347 | 
            +
                    image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
         | 
| 348 | 
            +
                    cond_lat = self.encode_condition_image(image)
         | 
| 349 | 
            +
                    if guidance_scale > 1:
         | 
| 350 | 
            +
                        negative_lat = self.encode_condition_image(torch.zeros_like(image))
         | 
| 351 | 
            +
                        cond_lat = torch.cat([negative_lat, cond_lat])
         | 
| 352 | 
            +
                    encoded = self.vision_encoder(image_2, output_hidden_states=False)
         | 
| 353 | 
            +
                    global_embeds = encoded.image_embeds
         | 
| 354 | 
            +
                    global_embeds = global_embeds.unsqueeze(-2)
         | 
| 355 | 
            +
                    
         | 
| 356 | 
            +
                    encoder_hidden_states = self._encode_prompt(
         | 
| 357 | 
            +
                        prompt,
         | 
| 358 | 
            +
                        self.device,
         | 
| 359 | 
            +
                        num_images_per_prompt,
         | 
| 360 | 
            +
                        False
         | 
| 361 | 
            +
                    )
         | 
| 362 | 
            +
                    ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
         | 
| 363 | 
            +
                    encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
         | 
| 364 | 
            +
                    cak = dict(cond_lat=cond_lat)
         | 
| 365 | 
            +
                    if hasattr(self.unet, "controlnet"):
         | 
| 366 | 
            +
                        cak['control_depth'] = depth_image
         | 
| 367 | 
            +
                    latents: torch.Tensor = super().__call__(
         | 
| 368 | 
            +
                        None,
         | 
| 369 | 
            +
                        *args,
         | 
| 370 | 
            +
                        cross_attention_kwargs=cak,
         | 
| 371 | 
            +
                        guidance_scale=guidance_scale,
         | 
| 372 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 373 | 
            +
                        prompt_embeds=encoder_hidden_states,
         | 
| 374 | 
            +
                        num_inference_steps=num_inference_steps,
         | 
| 375 | 
            +
                        output_type='latent',
         | 
| 376 | 
            +
                        width=width,
         | 
| 377 | 
            +
                        height=height,
         | 
| 378 | 
            +
                        **kwargs
         | 
| 379 | 
            +
                    ).images
         | 
| 380 | 
            +
                    latents = unscale_latents(latents)
         | 
| 381 | 
            +
                    if not output_type == "latent":
         | 
| 382 | 
            +
                        image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
         | 
| 383 | 
            +
                    else:
         | 
| 384 | 
            +
                        image = latents
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 387 | 
            +
                    if not return_dict:
         | 
| 388 | 
            +
                        return (image,)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    return ImagePipelineOutput(images=image)
         | 
