Upload modeling_mrt5.py with huggingface_hub
Browse files- modeling_mrt5.py +1352 -0
modeling_mrt5.py
ADDED
|
@@ -0,0 +1,1352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modeling_mrt5.py
|
| 2 |
+
# Author: Julie Kallini
|
| 3 |
+
# Description: This file contains the implementation of the MrT5 model.
|
| 4 |
+
# The code is adapted from HuggingFace's modeling_t5.py. New code sequences
|
| 5 |
+
# are labeled with comments.
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import copy
|
| 9 |
+
import numpy as np
|
| 10 |
+
from torch import nn
|
| 11 |
+
from models.modeling_t5 import (
|
| 12 |
+
T5Attention,
|
| 13 |
+
T5LayerNorm,
|
| 14 |
+
T5LayerFF,
|
| 15 |
+
T5Stack,
|
| 16 |
+
T5ForConditionalGeneration,
|
| 17 |
+
softmax1,
|
| 18 |
+
)
|
| 19 |
+
from configuration_mrt5 import MrT5Config
|
| 20 |
+
from transformers.modeling_outputs import (
|
| 21 |
+
BaseModelOutput,
|
| 22 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 23 |
+
Seq2SeqLMOutput,
|
| 24 |
+
)
|
| 25 |
+
from transformers.utils import logging
|
| 26 |
+
from typing import Optional, Tuple, Union
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class MrT5BaseModelOutputWithPastAndCrossAttentions(BaseModelOutputWithPastAndCrossAttentions):
|
| 33 |
+
delete_gate_mask: torch.FloatTensor = None
|
| 34 |
+
delete_gate_output: torch.FloatTensor = None
|
| 35 |
+
delete_gate_logits: torch.FloatTensor = None
|
| 36 |
+
attention_mask: torch.FloatTensor = None
|
| 37 |
+
attention_queries: torch.FloatTensor = None
|
| 38 |
+
attention_keys: torch.FloatTensor = None
|
| 39 |
+
attention_values: torch.FloatTensor = None
|
| 40 |
+
attention_scores: torch.FloatTensor = None
|
| 41 |
+
cross_attention_keys: torch.FloatTensor = None
|
| 42 |
+
cross_attention_queries: torch.FloatTensor = None
|
| 43 |
+
cross_attention_values: torch.FloatTensor = None
|
| 44 |
+
cross_attention_scores: torch.FloatTensor = None
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class MrT5Seq2SeqLMOutput(Seq2SeqLMOutput):
|
| 49 |
+
delete_gate_mask: torch.FloatTensor = None
|
| 50 |
+
delete_gate_output: torch.FloatTensor = None
|
| 51 |
+
delete_gate_logits: torch.FloatTensor = None
|
| 52 |
+
encoder_keys: torch.FloatTensor = None
|
| 53 |
+
encoder_queries: torch.FloatTensor = None
|
| 54 |
+
encoder_values: torch.FloatTensor = None
|
| 55 |
+
encoder_scores: torch.FloatTensor = None
|
| 56 |
+
decoder_keys: torch.FloatTensor = None
|
| 57 |
+
decoder_queries: torch.FloatTensor = None
|
| 58 |
+
decoder_values: torch.FloatTensor = None
|
| 59 |
+
decoder_scores: torch.FloatTensor = None
|
| 60 |
+
cross_attention_keys: torch.FloatTensor = None
|
| 61 |
+
cross_attention_queries: torch.FloatTensor = None
|
| 62 |
+
cross_attention_values: torch.FloatTensor = None
|
| 63 |
+
cross_attention_scores: torch.FloatTensor = None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
TORCH_INIT_FUNCTIONS = {
|
| 67 |
+
"uniform_": nn.init.uniform_,
|
| 68 |
+
"normal_": nn.init.normal_,
|
| 69 |
+
"trunc_normal_": nn.init.trunc_normal_,
|
| 70 |
+
"constant_": nn.init.constant_,
|
| 71 |
+
"xavier_uniform_": nn.init.xavier_uniform_,
|
| 72 |
+
"xavier_normal_": nn.init.xavier_normal_,
|
| 73 |
+
"kaiming_uniform_": nn.init.kaiming_uniform_,
|
| 74 |
+
"kaiming_normal_": nn.init.kaiming_normal_,
|
| 75 |
+
"uniform": nn.init.uniform,
|
| 76 |
+
"normal": nn.init.normal,
|
| 77 |
+
"xavier_uniform": nn.init.xavier_uniform,
|
| 78 |
+
"xavier_normal": nn.init.xavier_normal,
|
| 79 |
+
"kaiming_uniform": nn.init.kaiming_uniform,
|
| 80 |
+
"kaiming_normal": nn.init.kaiming_normal,
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
class ScaledSigmoid(nn.Module):
|
| 84 |
+
def __init__(self, sigmoid_mask_scale):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.sigmoid_mask_scale = sigmoid_mask_scale
|
| 87 |
+
|
| 88 |
+
def forward(self, input):
|
| 89 |
+
return self.sigmoid_mask_scale * torch.sigmoid(-input)
|
| 90 |
+
|
| 91 |
+
def gumbel_noise_like(x: torch.Tensor) -> torch.Tensor:
|
| 92 |
+
eps = 3e-4 if x.dtype == torch.float16 else 1e-10
|
| 93 |
+
uniform = torch.empty_like(x).uniform_(eps, 1 - eps)
|
| 94 |
+
return - (- uniform.log()).log()
|
| 95 |
+
|
| 96 |
+
class SigmoidDeleteGate(nn.Module):
|
| 97 |
+
def __init__(self, config):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.has_layer_norm = config.gate_layer_norm
|
| 100 |
+
if self.has_layer_norm:
|
| 101 |
+
self.layer_norm = T5LayerNorm(config.hidden_size)
|
| 102 |
+
self.feed_forward = nn.Linear(config.hidden_size, 1)
|
| 103 |
+
self._init_weights(self.feed_forward)
|
| 104 |
+
self.activation = ScaledSigmoid(config.sigmoid_mask_scale)
|
| 105 |
+
self.use_gumbel_noise = config.use_gumbel_noise
|
| 106 |
+
|
| 107 |
+
def forward(self, hidden_states, input_ids):
|
| 108 |
+
if self.has_layer_norm:
|
| 109 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 110 |
+
delete_gate_logits = self.feed_forward(hidden_states)
|
| 111 |
+
|
| 112 |
+
# Add gumbel noise to the delete gate logits
|
| 113 |
+
if self.training and self.use_gumbel_noise:
|
| 114 |
+
gumbel_noise = gumbel_noise_like(delete_gate_logits)
|
| 115 |
+
delete_gate_logits += gumbel_noise
|
| 116 |
+
|
| 117 |
+
gate_values = self.activation(delete_gate_logits)
|
| 118 |
+
|
| 119 |
+
# Check if there are any pad tokens in input_ids
|
| 120 |
+
if (input_ids == 0).any():
|
| 121 |
+
# Set gate values for pad tokens (input_ids == 0) to sigmoid_mask_scale
|
| 122 |
+
pad_mask = (input_ids == 0).unsqueeze(-1)
|
| 123 |
+
gate_values = torch.where(pad_mask, torch.tensor(self.activation.sigmoid_mask_scale), gate_values)
|
| 124 |
+
|
| 125 |
+
return gate_values, delete_gate_logits
|
| 126 |
+
|
| 127 |
+
def _init_weights(self, m, init_func="xavier_uniform_"):
|
| 128 |
+
# Initialize the weights. This is necessary because
|
| 129 |
+
# HuggingFace disables initialization during "from_pretrained"
|
| 130 |
+
if isinstance(m, nn.Linear):
|
| 131 |
+
TORCH_INIT_FUNCTIONS[init_func](m.weight)
|
| 132 |
+
m.bias.data.fill_(1)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class LogSigmoidDeleteGate(SigmoidDeleteGate):
|
| 136 |
+
def __init__(self, config):
|
| 137 |
+
super().__init__(config)
|
| 138 |
+
self.activation = nn.LogSigmoid()
|
| 139 |
+
|
| 140 |
+
class RandomDeleteGate(nn.Module):
|
| 141 |
+
def __init__(self, config):
|
| 142 |
+
super().__init__()
|
| 143 |
+
# Store the sigmoid_mask_scale and the probability of activation
|
| 144 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
| 145 |
+
self.random_deletion_probability = config.random_deletion_probability
|
| 146 |
+
|
| 147 |
+
def __random_mask_tensor(self, x, n):
|
| 148 |
+
# Determine the shape for the output tensor
|
| 149 |
+
target_shape = (x.shape[0], x.shape[1], 1)
|
| 150 |
+
total_elements = x.shape[0] * x.shape[1]
|
| 151 |
+
|
| 152 |
+
# Create a flattened float tensor of all 0.0
|
| 153 |
+
flat_tensor = torch.zeros(total_elements, dtype=torch.float32, device=x.device)
|
| 154 |
+
|
| 155 |
+
# Randomly select n indices to be set to 1.0
|
| 156 |
+
indices = torch.randperm(total_elements)[:n]
|
| 157 |
+
flat_tensor[indices] = 1.0
|
| 158 |
+
|
| 159 |
+
# Reshape it to match the desired target shape
|
| 160 |
+
float_tensor = flat_tensor.view(target_shape)
|
| 161 |
+
|
| 162 |
+
return float_tensor
|
| 163 |
+
|
| 164 |
+
def forward(self, hidden_states, input_ids):
|
| 165 |
+
# Calculate the number of tokens to delete using a gaussian
|
| 166 |
+
deletion_percentage = np.random.normal(loc=self.random_deletion_probability, scale=0.05)
|
| 167 |
+
n_deletions = int(deletion_percentage * hidden_states.shape[0] * hidden_states.shape[1])
|
| 168 |
+
|
| 169 |
+
# Create a random mask with n_deletions True values
|
| 170 |
+
random_mask = self.__random_mask_tensor(hidden_states, n_deletions)
|
| 171 |
+
|
| 172 |
+
# Scale the mask by sigmoid_mask_scale
|
| 173 |
+
delete_gate_mask = random_mask * self.sigmoid_mask_scale
|
| 174 |
+
return delete_gate_mask, delete_gate_mask
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class FixedDeleteGate(nn.Module):
|
| 178 |
+
def __init__(self, config):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
| 181 |
+
self.fixed_deletion_amount = config.fixed_deletion_amount
|
| 182 |
+
self.sep_tokens = torch.tensor([12, 13, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
|
| 183 |
+
46, 47, 48, 49, 50, 61, 62, 63, 64, 65, 66, 67, 94,
|
| 184 |
+
95, 96, 97, 98, 99, 126, 127, 128, 129, 1])
|
| 185 |
+
|
| 186 |
+
def __create_mask(self, input_ids):
|
| 187 |
+
device = input_ids.device
|
| 188 |
+
batch_size, seq_len = input_ids.size()
|
| 189 |
+
self.sep_tokens = self.sep_tokens.to(device)
|
| 190 |
+
|
| 191 |
+
# Create an initial mask filled with sigmoid_mask_scale
|
| 192 |
+
mask = torch.full((batch_size, seq_len), self.sigmoid_mask_scale, device=device)
|
| 193 |
+
|
| 194 |
+
# Find sep_token indices
|
| 195 |
+
is_sep = torch.isin(input_ids, self.sep_tokens)
|
| 196 |
+
|
| 197 |
+
# Create a tensor of segment lengths
|
| 198 |
+
sep_positions = torch.cumsum(is_sep, dim=1)
|
| 199 |
+
segment_lengths = torch.zeros_like(input_ids, dtype=torch.float)
|
| 200 |
+
segment_lengths[:, 1:] = (sep_positions[:, 1:] != sep_positions[:, :-1]).float()
|
| 201 |
+
segment_lengths[:, 0] = 1.0
|
| 202 |
+
segment_lengths = torch.cumsum(segment_lengths, dim=1)
|
| 203 |
+
|
| 204 |
+
# Calculate number of zeros for each segment
|
| 205 |
+
segment_counts = torch.bincount(sep_positions.view(-1), minlength=seq_len)
|
| 206 |
+
segment_starts = torch.cumsum(torch.cat([torch.tensor([0], device=device), segment_counts[:-1]]), dim=0)
|
| 207 |
+
segment_ends = torch.cumsum(segment_counts, dim=0)
|
| 208 |
+
num_zeros = torch.ceil((1 - self.fixed_deletion_amount) * (segment_ends - segment_starts)).long()
|
| 209 |
+
|
| 210 |
+
# Create the mask based on the calculated number of zeros
|
| 211 |
+
for i in range(batch_size):
|
| 212 |
+
for start, count in zip(segment_starts, num_zeros):
|
| 213 |
+
mask[i, start:start + count] = 0
|
| 214 |
+
|
| 215 |
+
return mask.to(torch.float)
|
| 216 |
+
|
| 217 |
+
def forward(self, hidden_states, input_ids):
|
| 218 |
+
delete_gate_mask = self.__create_mask(input_ids).unsqueeze(-1)
|
| 219 |
+
return delete_gate_mask, delete_gate_mask
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class MrT5Attention(T5Attention):
|
| 223 |
+
"""
|
| 224 |
+
Extends the T5Attention class to include a delete gate. Only the forward
|
| 225 |
+
method is modified. The delete_gate_mask passed to the forward function
|
| 226 |
+
is applied to the attention scores.
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
def __init__(self, config: MrT5Config, has_relative_attention_bias=False):
|
| 230 |
+
super().__init__(config, has_relative_attention_bias)
|
| 231 |
+
#### NEW CODE ####
|
| 232 |
+
self.use_softmax1 = config.use_softmax1
|
| 233 |
+
#### NEW CODE ####
|
| 234 |
+
|
| 235 |
+
def forward(
|
| 236 |
+
self,
|
| 237 |
+
hidden_states,
|
| 238 |
+
mask=None,
|
| 239 |
+
key_value_states=None,
|
| 240 |
+
position_bias=None,
|
| 241 |
+
past_key_value=None,
|
| 242 |
+
layer_head_mask=None,
|
| 243 |
+
query_length=None,
|
| 244 |
+
use_cache=False,
|
| 245 |
+
output_attentions=False,
|
| 246 |
+
#### NEW CODE ####
|
| 247 |
+
delete_gate_mask=None,
|
| 248 |
+
#### NEW CODE ####
|
| 249 |
+
):
|
| 250 |
+
"""
|
| 251 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
| 252 |
+
"""
|
| 253 |
+
# Input is (batch_size, seq_length, dim)
|
| 254 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
| 255 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
| 256 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
| 257 |
+
|
| 258 |
+
real_seq_length = seq_length
|
| 259 |
+
|
| 260 |
+
if past_key_value is not None:
|
| 261 |
+
if len(past_key_value) != 2:
|
| 262 |
+
raise ValueError(
|
| 263 |
+
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
| 264 |
+
)
|
| 265 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
| 266 |
+
|
| 267 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[
|
| 268 |
+
1]
|
| 269 |
+
|
| 270 |
+
def shape(states):
|
| 271 |
+
"""projection"""
|
| 272 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
| 273 |
+
|
| 274 |
+
def unshape(states):
|
| 275 |
+
"""reshape"""
|
| 276 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
| 277 |
+
|
| 278 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
| 279 |
+
"""projects hidden states correctly to key/query states"""
|
| 280 |
+
if key_value_states is None:
|
| 281 |
+
# self-attn
|
| 282 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
| 283 |
+
hidden_states = shape(proj_layer(hidden_states))
|
| 284 |
+
elif past_key_value is None:
|
| 285 |
+
# cross-attn
|
| 286 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
| 287 |
+
hidden_states = shape(proj_layer(key_value_states))
|
| 288 |
+
|
| 289 |
+
if past_key_value is not None:
|
| 290 |
+
if key_value_states is None:
|
| 291 |
+
# self-attn
|
| 292 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
| 293 |
+
hidden_states = torch.cat(
|
| 294 |
+
[past_key_value, hidden_states], dim=2)
|
| 295 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
| 296 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
| 297 |
+
# the provided `key_value_states` to support prefix tuning
|
| 298 |
+
# cross-attn
|
| 299 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
| 300 |
+
hidden_states = shape(proj_layer(key_value_states))
|
| 301 |
+
else:
|
| 302 |
+
# cross-attn
|
| 303 |
+
hidden_states = past_key_value
|
| 304 |
+
return hidden_states
|
| 305 |
+
|
| 306 |
+
# get query states
|
| 307 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
| 308 |
+
query_states = shape(self.q(hidden_states))
|
| 309 |
+
|
| 310 |
+
# get key/value states
|
| 311 |
+
key_states = project(
|
| 312 |
+
hidden_states, self.k, key_value_states, past_key_value[
|
| 313 |
+
0] if past_key_value is not None else None
|
| 314 |
+
)
|
| 315 |
+
value_states = project(
|
| 316 |
+
hidden_states, self.v, key_value_states, past_key_value[
|
| 317 |
+
1] if past_key_value is not None else None
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# compute scores
|
| 321 |
+
scores = torch.matmul(
|
| 322 |
+
query_states, key_states.transpose(3, 2)
|
| 323 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
| 324 |
+
|
| 325 |
+
#### NEW CODE ####
|
| 326 |
+
if not self.has_absolute_position_embeddings:
|
| 327 |
+
#### NEW CODE ####
|
| 328 |
+
if position_bias is None:
|
| 329 |
+
if not self.has_relative_attention_bias:
|
| 330 |
+
position_bias = torch.zeros(
|
| 331 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
| 332 |
+
)
|
| 333 |
+
if self.gradient_checkpointing and self.training:
|
| 334 |
+
position_bias.requires_grad = True
|
| 335 |
+
else:
|
| 336 |
+
position_bias = self.compute_bias(
|
| 337 |
+
real_seq_length, key_length, device=scores.device)
|
| 338 |
+
|
| 339 |
+
# if key and values are already calculated
|
| 340 |
+
# we want only the last query position bias
|
| 341 |
+
if past_key_value is not None:
|
| 342 |
+
position_bias = position_bias[:, :, -hidden_states.size(1):, :]
|
| 343 |
+
|
| 344 |
+
if mask is not None:
|
| 345 |
+
# (batch_size, n_heads, seq_length, key_length)
|
| 346 |
+
position_bias = position_bias + mask
|
| 347 |
+
|
| 348 |
+
if self.pruned_heads:
|
| 349 |
+
mask = torch.ones(position_bias.shape[1])
|
| 350 |
+
mask[list(self.pruned_heads)] = 0
|
| 351 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
| 352 |
+
else:
|
| 353 |
+
position_bias_masked = position_bias
|
| 354 |
+
|
| 355 |
+
scores = scores + position_bias_masked
|
| 356 |
+
|
| 357 |
+
#### NEW CODE ####
|
| 358 |
+
# If there is no position bias, add attention mask to scores directly
|
| 359 |
+
elif mask is not None:
|
| 360 |
+
scores = scores + mask
|
| 361 |
+
|
| 362 |
+
#### NEW CODE ####
|
| 363 |
+
# Log scores to return for loss calculation
|
| 364 |
+
scores_to_return = scores
|
| 365 |
+
#### NEW CODE ####
|
| 366 |
+
|
| 367 |
+
# Apply the mask from the delete gate
|
| 368 |
+
if delete_gate_mask is not None:
|
| 369 |
+
scores = scores + delete_gate_mask.squeeze(-1).unsqueeze(-2).unsqueeze(-2)
|
| 370 |
+
|
| 371 |
+
if self.use_softmax1:
|
| 372 |
+
attn_weights = softmax1(scores.float(), dim=-1).type_as(
|
| 373 |
+
scores)
|
| 374 |
+
else:
|
| 375 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
| 376 |
+
scores
|
| 377 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
| 378 |
+
|
| 379 |
+
#### NEW CODE ####
|
| 380 |
+
|
| 381 |
+
attn_weights = nn.functional.dropout(
|
| 382 |
+
attn_weights, p=self.dropout, training=self.training
|
| 383 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
| 384 |
+
|
| 385 |
+
# Mask heads if we want to
|
| 386 |
+
if layer_head_mask is not None:
|
| 387 |
+
attn_weights = attn_weights * layer_head_mask
|
| 388 |
+
|
| 389 |
+
# (batch_size, seq_length, dim)
|
| 390 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states))
|
| 391 |
+
attn_output = self.o(attn_output)
|
| 392 |
+
|
| 393 |
+
present_key_value_state = (key_states, value_states) if (
|
| 394 |
+
self.is_decoder and use_cache) else None
|
| 395 |
+
outputs = (attn_output,) + \
|
| 396 |
+
(present_key_value_state,) + (position_bias,)
|
| 397 |
+
|
| 398 |
+
if output_attentions:
|
| 399 |
+
attentions_keys_queries = (attn_weights, key_states, query_states, value_states, scores_to_return)
|
| 400 |
+
outputs = outputs + (attentions_keys_queries,)
|
| 401 |
+
|
| 402 |
+
return outputs
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class MrT5LayerSelfAttention(nn.Module):
|
| 406 |
+
"""
|
| 407 |
+
Modified version of T5LayerSelfAttention that uses MrT5Attention instead
|
| 408 |
+
of T5Attention.
|
| 409 |
+
"""
|
| 410 |
+
|
| 411 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
| 412 |
+
super().__init__()
|
| 413 |
+
#### NEW CODE ####
|
| 414 |
+
# Use MrT5Attention instead of T5Attention
|
| 415 |
+
self.SelfAttention = MrT5Attention(
|
| 416 |
+
config, has_relative_attention_bias=has_relative_attention_bias)
|
| 417 |
+
#### NEW CODE ####
|
| 418 |
+
self.layer_norm = T5LayerNorm(
|
| 419 |
+
config.d_model, eps=config.layer_norm_epsilon)
|
| 420 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 421 |
+
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
hidden_states,
|
| 425 |
+
attention_mask=None,
|
| 426 |
+
position_bias=None,
|
| 427 |
+
layer_head_mask=None,
|
| 428 |
+
past_key_value=None,
|
| 429 |
+
use_cache=False,
|
| 430 |
+
output_attentions=False,
|
| 431 |
+
#### NEW CODE ####
|
| 432 |
+
delete_gate_mask=None,
|
| 433 |
+
#### NEW CODE ####
|
| 434 |
+
):
|
| 435 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
| 436 |
+
attention_output = self.SelfAttention(
|
| 437 |
+
normed_hidden_states,
|
| 438 |
+
mask=attention_mask,
|
| 439 |
+
position_bias=position_bias,
|
| 440 |
+
layer_head_mask=layer_head_mask,
|
| 441 |
+
past_key_value=past_key_value,
|
| 442 |
+
use_cache=use_cache,
|
| 443 |
+
output_attentions=output_attentions,
|
| 444 |
+
#### NEW CODE ####
|
| 445 |
+
delete_gate_mask=delete_gate_mask,
|
| 446 |
+
#### NEW CODE ####
|
| 447 |
+
)
|
| 448 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
| 449 |
+
# add attentions if we output them
|
| 450 |
+
outputs = (hidden_states,) + attention_output[1:]
|
| 451 |
+
return outputs
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class MrT5LayerCrossAttention(nn.Module):
|
| 455 |
+
"""
|
| 456 |
+
Modified version of T5LayerCrossAttention that uses MrT5Attention instead
|
| 457 |
+
of T5Attention.
|
| 458 |
+
"""
|
| 459 |
+
|
| 460 |
+
def __init__(self, config):
|
| 461 |
+
super().__init__()
|
| 462 |
+
#### NEW CODE ####
|
| 463 |
+
# Use MrT5Attention instead of T5Attention
|
| 464 |
+
self.EncDecAttention = MrT5Attention(
|
| 465 |
+
config, has_relative_attention_bias=False)
|
| 466 |
+
#### NEW CODE ####
|
| 467 |
+
self.layer_norm = T5LayerNorm(
|
| 468 |
+
config.d_model, eps=config.layer_norm_epsilon)
|
| 469 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
| 470 |
+
|
| 471 |
+
def forward(
|
| 472 |
+
self,
|
| 473 |
+
hidden_states,
|
| 474 |
+
key_value_states,
|
| 475 |
+
attention_mask=None,
|
| 476 |
+
position_bias=None,
|
| 477 |
+
layer_head_mask=None,
|
| 478 |
+
past_key_value=None,
|
| 479 |
+
use_cache=False,
|
| 480 |
+
query_length=None,
|
| 481 |
+
output_attentions=False,
|
| 482 |
+
#### NEW CODE ####
|
| 483 |
+
delete_gate_mask=None,
|
| 484 |
+
#### NEW CODE ####
|
| 485 |
+
):
|
| 486 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
| 487 |
+
attention_output = self.EncDecAttention(
|
| 488 |
+
normed_hidden_states,
|
| 489 |
+
mask=attention_mask,
|
| 490 |
+
key_value_states=key_value_states,
|
| 491 |
+
position_bias=position_bias,
|
| 492 |
+
layer_head_mask=layer_head_mask,
|
| 493 |
+
past_key_value=past_key_value,
|
| 494 |
+
use_cache=use_cache,
|
| 495 |
+
query_length=query_length,
|
| 496 |
+
output_attentions=output_attentions,
|
| 497 |
+
#### NEW CODE ####
|
| 498 |
+
delete_gate_mask=delete_gate_mask,
|
| 499 |
+
#### NEW CODE ####
|
| 500 |
+
)
|
| 501 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
| 502 |
+
# add attentions if we output them
|
| 503 |
+
outputs = (layer_output,) + attention_output[1:]
|
| 504 |
+
return outputs
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class MrT5Block(nn.Module):
|
| 508 |
+
"""
|
| 509 |
+
Modified version of T5Block that uses MrT5LayerSelfAttention and
|
| 510 |
+
MrT5LayerCrossAttention instead of T5LayerSelfAttention and
|
| 511 |
+
T5LayerCrossAttention.
|
| 512 |
+
"""
|
| 513 |
+
|
| 514 |
+
def __init__(self, config, has_relative_attention_bias=False,
|
| 515 |
+
#### NEW CODE ####
|
| 516 |
+
has_delete_gate=False,
|
| 517 |
+
#### NEW CODE ####
|
| 518 |
+
):
|
| 519 |
+
super().__init__()
|
| 520 |
+
self.is_decoder = config.is_decoder
|
| 521 |
+
self.layer = nn.ModuleList()
|
| 522 |
+
#### NEW CODE ####
|
| 523 |
+
# Use MrT5LayerSelfAttention and MrT5LayerCrossAttention
|
| 524 |
+
# instead of T5LayerSelfAttention and T5LayerCrossAttention
|
| 525 |
+
self.layer.append(MrT5LayerSelfAttention(
|
| 526 |
+
config, has_relative_attention_bias=has_relative_attention_bias))
|
| 527 |
+
if self.is_decoder:
|
| 528 |
+
self.layer.append(MrT5LayerCrossAttention(config))
|
| 529 |
+
#### NEW CODE ####
|
| 530 |
+
|
| 531 |
+
self.layer.append(T5LayerFF(config))
|
| 532 |
+
|
| 533 |
+
#### NEW CODE ####
|
| 534 |
+
# Add delete gate if needed
|
| 535 |
+
self.has_delete_gate = has_delete_gate
|
| 536 |
+
if self.has_delete_gate:
|
| 537 |
+
if config.deletion_type == "scaled_sigmoid":
|
| 538 |
+
self.delete_gate = SigmoidDeleteGate(config)
|
| 539 |
+
elif config.deletion_type == "log_sigmoid":
|
| 540 |
+
self.delete_gate = LogSigmoidDeleteGate(config)
|
| 541 |
+
elif config.deletion_type == "random":
|
| 542 |
+
self.delete_gate = RandomDeleteGate(config)
|
| 543 |
+
elif config.deletion_type == "fixed":
|
| 544 |
+
self.delete_gate = FixedDeleteGate(config)
|
| 545 |
+
else:
|
| 546 |
+
raise ValueError(
|
| 547 |
+
f"Invalid deletion type: {config.deletion_type}")
|
| 548 |
+
|
| 549 |
+
# Set hard_delete flags
|
| 550 |
+
self.sigmoid_mask_scale = config.sigmoid_mask_scale
|
| 551 |
+
self.deletion_threshold = config.deletion_threshold
|
| 552 |
+
#### NEW CODE ####
|
| 553 |
+
|
| 554 |
+
#### NEW CODE ####
|
| 555 |
+
|
| 556 |
+
def __get_new_positions_and_mask(self, batch_size, seq_len, delete_gate_mask, deletion_threshold, device):
|
| 557 |
+
delete_gate_mask = delete_gate_mask.squeeze(-1)
|
| 558 |
+
|
| 559 |
+
# Create filter from delete gate mask
|
| 560 |
+
deletion_threshold = deletion_threshold if deletion_threshold is not None else self.deletion_threshold
|
| 561 |
+
keep_this = delete_gate_mask > deletion_threshold
|
| 562 |
+
|
| 563 |
+
# Calculate the target position for each token
|
| 564 |
+
target_pos = torch.cumsum(keep_this, dim=1) - 1
|
| 565 |
+
new_len = target_pos[:, -1].max().item() + 1
|
| 566 |
+
|
| 567 |
+
# Clamp the target position to avoid out of bounds when deleting everything
|
| 568 |
+
target_pos = target_pos.clamp(min=0)
|
| 569 |
+
|
| 570 |
+
# Map the positions to the src side. Do this in int32, because it's faster and we will not have sequences
|
| 571 |
+
# longer than 2^31
|
| 572 |
+
positions = torch.arange(seq_len, device=device, dtype=torch.int32).repeat(batch_size, 1)
|
| 573 |
+
positions *= keep_this.int()
|
| 574 |
+
|
| 575 |
+
src_side_pos = torch.zeros(batch_size, new_len, device=device, dtype=torch.int32)
|
| 576 |
+
src_side_pos.scatter_add_(1, target_pos, positions)
|
| 577 |
+
|
| 578 |
+
# Create the new mask
|
| 579 |
+
new_mask = torch.arange(new_len, device=device).expand(batch_size, -1) <= target_pos[:, -1:]
|
| 580 |
+
new_mask = (~new_mask).float() * -1e9
|
| 581 |
+
new_mask = new_mask.unsqueeze(-1)
|
| 582 |
+
|
| 583 |
+
return src_side_pos.long(), new_mask
|
| 584 |
+
|
| 585 |
+
def __hard_delete_hidden_states(self, hidden_states, positions):
|
| 586 |
+
new_hidden_states = torch.gather(hidden_states, 1, positions.unsqueeze(2).expand(-1, -1, hidden_states.size(2)))
|
| 587 |
+
return new_hidden_states
|
| 588 |
+
|
| 589 |
+
def __hard_delete_4_dimensions(self, position_bias, positions):
|
| 590 |
+
new_position_bias = torch.gather(position_bias, 1, positions.unsqueeze(2).unsqueeze(3).expand(-1, -1, position_bias.size(2), position_bias.size(3)))
|
| 591 |
+
return new_position_bias
|
| 592 |
+
|
| 593 |
+
#### NEW CODE ####
|
| 594 |
+
|
| 595 |
+
def forward(
|
| 596 |
+
self,
|
| 597 |
+
hidden_states,
|
| 598 |
+
attention_mask=None,
|
| 599 |
+
position_bias=None,
|
| 600 |
+
encoder_hidden_states=None,
|
| 601 |
+
encoder_attention_mask=None,
|
| 602 |
+
encoder_decoder_position_bias=None,
|
| 603 |
+
layer_head_mask=None,
|
| 604 |
+
cross_attn_layer_head_mask=None,
|
| 605 |
+
past_key_value=None,
|
| 606 |
+
use_cache=False,
|
| 607 |
+
output_attentions=False,
|
| 608 |
+
return_dict=True,
|
| 609 |
+
#### NEW CODE ####
|
| 610 |
+
delete_gate_mask=None,
|
| 611 |
+
input_ids=None,
|
| 612 |
+
hard_delete=None,
|
| 613 |
+
deletion_threshold=None,
|
| 614 |
+
#### NEW CODE ####
|
| 615 |
+
):
|
| 616 |
+
if past_key_value is not None:
|
| 617 |
+
if not self.is_decoder:
|
| 618 |
+
logger.warning(
|
| 619 |
+
"`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
| 620 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
| 621 |
+
|
| 622 |
+
if len(past_key_value) != expected_num_past_key_values:
|
| 623 |
+
raise ValueError(
|
| 624 |
+
f"There should be {expected_num_past_key_values} past states. "
|
| 625 |
+
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
| 626 |
+
f"Got {len(past_key_value)} past key / value states"
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
self_attn_past_key_value = past_key_value[:2]
|
| 630 |
+
cross_attn_past_key_value = past_key_value[2:]
|
| 631 |
+
else:
|
| 632 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
| 633 |
+
|
| 634 |
+
##### NEW CODE #####
|
| 635 |
+
# Initialize delete gate values and logits for logging/loss calculation
|
| 636 |
+
delete_gate_values = None
|
| 637 |
+
delete_gate_logits = None
|
| 638 |
+
|
| 639 |
+
if self.has_delete_gate:
|
| 640 |
+
delete_gate_values, delete_gate_logits = self.delete_gate(
|
| 641 |
+
hidden_states, input_ids)
|
| 642 |
+
delete_gate_mask = delete_gate_values
|
| 643 |
+
|
| 644 |
+
# Raise error if all tokens are deleted in any sequence in batch
|
| 645 |
+
if (delete_gate_values < self.deletion_threshold).all():
|
| 646 |
+
raise ValueError("All tokens are deleted in this batch. " + \
|
| 647 |
+
"Please adjust the deletion rate or " + \
|
| 648 |
+
"alpha hyperparameter.")
|
| 649 |
+
|
| 650 |
+
# Apply hard deletion
|
| 651 |
+
if hard_delete:
|
| 652 |
+
|
| 653 |
+
# Compute new token positions
|
| 654 |
+
new_positions, delete_gate_mask = self.__get_new_positions_and_mask(
|
| 655 |
+
hidden_states.size(0), hidden_states.size(1), delete_gate_mask, deletion_threshold, hidden_states.device)
|
| 656 |
+
|
| 657 |
+
# Compute new position bias
|
| 658 |
+
if position_bias is not None:
|
| 659 |
+
new_position_bias = self.__hard_delete_4_dimensions(
|
| 660 |
+
position_bias.permute(0, 2, 3, 1), new_positions)
|
| 661 |
+
new_position_bias = self.__hard_delete_4_dimensions(
|
| 662 |
+
new_position_bias.permute(0, 2, 1, 3), new_positions)
|
| 663 |
+
position_bias = new_position_bias.permute(0, 3, 2, 1)
|
| 664 |
+
|
| 665 |
+
# Compute new attention mask
|
| 666 |
+
new_attention_mask = self.__hard_delete_4_dimensions(
|
| 667 |
+
attention_mask.permute(0, 3, 1, 2), new_positions)
|
| 668 |
+
attention_mask = new_attention_mask.permute(0, 2, 3, 1)
|
| 669 |
+
|
| 670 |
+
# Compute new hidden states and delete gate mask
|
| 671 |
+
hidden_states = self.__hard_delete_hidden_states(
|
| 672 |
+
hidden_states, new_positions)
|
| 673 |
+
|
| 674 |
+
##### NEW CODE #####
|
| 675 |
+
|
| 676 |
+
self_attention_outputs = self.layer[0](
|
| 677 |
+
hidden_states,
|
| 678 |
+
attention_mask=attention_mask,
|
| 679 |
+
position_bias=position_bias,
|
| 680 |
+
layer_head_mask=layer_head_mask,
|
| 681 |
+
past_key_value=self_attn_past_key_value,
|
| 682 |
+
use_cache=use_cache,
|
| 683 |
+
output_attentions=output_attentions,
|
| 684 |
+
#### NEW CODE ####
|
| 685 |
+
# Only apply delete_gate_mask to self-attention if the block
|
| 686 |
+
# is the encoder
|
| 687 |
+
delete_gate_mask=None if self.is_decoder else delete_gate_mask,
|
| 688 |
+
#### NEW CODE ####
|
| 689 |
+
)
|
| 690 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
| 691 |
+
# Keep self-attention outputs and relative position weights
|
| 692 |
+
attention_outputs = self_attention_outputs[2:]
|
| 693 |
+
|
| 694 |
+
# clamp inf values to enable fp16 training
|
| 695 |
+
if hidden_states.dtype == torch.float16:
|
| 696 |
+
clamp_value = torch.where(
|
| 697 |
+
torch.isinf(hidden_states).any(),
|
| 698 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
| 699 |
+
torch.finfo(hidden_states.dtype).max,
|
| 700 |
+
)
|
| 701 |
+
hidden_states = torch.clamp(
|
| 702 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
| 703 |
+
|
| 704 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
| 705 |
+
if do_cross_attention:
|
| 706 |
+
# the actual query length is unknown for cross attention
|
| 707 |
+
# if using past key value states. Need to inject it here
|
| 708 |
+
if present_key_value_state is not None:
|
| 709 |
+
query_length = present_key_value_state[0].shape[2]
|
| 710 |
+
else:
|
| 711 |
+
query_length = None
|
| 712 |
+
|
| 713 |
+
cross_attention_outputs = self.layer[1](
|
| 714 |
+
hidden_states,
|
| 715 |
+
key_value_states=encoder_hidden_states,
|
| 716 |
+
attention_mask=encoder_attention_mask,
|
| 717 |
+
position_bias=encoder_decoder_position_bias,
|
| 718 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
| 719 |
+
past_key_value=cross_attn_past_key_value,
|
| 720 |
+
query_length=query_length,
|
| 721 |
+
use_cache=use_cache,
|
| 722 |
+
output_attentions=output_attentions,
|
| 723 |
+
#### NEW CODE ####
|
| 724 |
+
delete_gate_mask=delete_gate_mask,
|
| 725 |
+
#### NEW CODE ####
|
| 726 |
+
)
|
| 727 |
+
hidden_states = cross_attention_outputs[0]
|
| 728 |
+
|
| 729 |
+
# clamp inf values to enable fp16 training
|
| 730 |
+
if hidden_states.dtype == torch.float16:
|
| 731 |
+
clamp_value = torch.where(
|
| 732 |
+
torch.isinf(hidden_states).any(),
|
| 733 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
| 734 |
+
torch.finfo(hidden_states.dtype).max,
|
| 735 |
+
)
|
| 736 |
+
hidden_states = torch.clamp(
|
| 737 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
| 738 |
+
|
| 739 |
+
# Combine self attn and cross attn key value states
|
| 740 |
+
if present_key_value_state is not None:
|
| 741 |
+
present_key_value_state = present_key_value_state + \
|
| 742 |
+
cross_attention_outputs[1]
|
| 743 |
+
|
| 744 |
+
# Keep cross-attention outputs and relative position weights
|
| 745 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
| 746 |
+
|
| 747 |
+
# Apply Feed Forward layer
|
| 748 |
+
hidden_states = self.layer[-1](hidden_states)
|
| 749 |
+
|
| 750 |
+
# clamp inf values to enable fp16 training
|
| 751 |
+
if hidden_states.dtype == torch.float16:
|
| 752 |
+
clamp_value = torch.where(
|
| 753 |
+
torch.isinf(hidden_states).any(),
|
| 754 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
| 755 |
+
torch.finfo(hidden_states.dtype).max,
|
| 756 |
+
)
|
| 757 |
+
hidden_states = torch.clamp(
|
| 758 |
+
hidden_states, min=-clamp_value, max=clamp_value)
|
| 759 |
+
|
| 760 |
+
outputs = (hidden_states,)
|
| 761 |
+
|
| 762 |
+
if use_cache:
|
| 763 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
| 764 |
+
else:
|
| 765 |
+
outputs = outputs + attention_outputs
|
| 766 |
+
|
| 767 |
+
##### NEW CODE #####
|
| 768 |
+
if self.has_delete_gate:
|
| 769 |
+
outputs = outputs + \
|
| 770 |
+
(delete_gate_values, delete_gate_logits, delete_gate_mask, attention_mask)
|
| 771 |
+
##### NEW CODE #####
|
| 772 |
+
|
| 773 |
+
# hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights), (delete_gate_mask), (delete_gate_logits)
|
| 774 |
+
return outputs
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
class MrT5Stack(T5Stack):
|
| 778 |
+
def __init__(self, config, embed_tokens=None):
|
| 779 |
+
super().__init__(config, embed_tokens)
|
| 780 |
+
|
| 781 |
+
##### NEW CODE #####
|
| 782 |
+
if self.is_decoder:
|
| 783 |
+
self.block = nn.ModuleList(
|
| 784 |
+
[
|
| 785 |
+
MrT5Block(
|
| 786 |
+
config, has_relative_attention_bias=bool(i == 0))
|
| 787 |
+
for i in range(config.num_layers)
|
| 788 |
+
]
|
| 789 |
+
)
|
| 790 |
+
else:
|
| 791 |
+
blocks = []
|
| 792 |
+
for i in range(config.num_layers):
|
| 793 |
+
blocks.append(
|
| 794 |
+
MrT5Block(
|
| 795 |
+
config,
|
| 796 |
+
# Only the first layer has relative attention bias
|
| 797 |
+
has_relative_attention_bias=bool(i == 0),
|
| 798 |
+
# Add delete gate if specified
|
| 799 |
+
has_delete_gate=bool(i == config.delete_gate_layer),
|
| 800 |
+
)
|
| 801 |
+
)
|
| 802 |
+
self.block = nn.ModuleList(blocks)
|
| 803 |
+
##### NEW CODE #####
|
| 804 |
+
|
| 805 |
+
def forward(
|
| 806 |
+
self,
|
| 807 |
+
input_ids=None,
|
| 808 |
+
attention_mask=None,
|
| 809 |
+
encoder_hidden_states=None,
|
| 810 |
+
encoder_attention_mask=None,
|
| 811 |
+
inputs_embeds=None,
|
| 812 |
+
head_mask=None,
|
| 813 |
+
cross_attn_head_mask=None,
|
| 814 |
+
past_key_values=None,
|
| 815 |
+
use_cache=None,
|
| 816 |
+
output_attentions=None,
|
| 817 |
+
output_hidden_states=None,
|
| 818 |
+
return_dict=None,
|
| 819 |
+
#### NEW CODE ####
|
| 820 |
+
delete_gate_mask=None,
|
| 821 |
+
delete_gate_output=None,
|
| 822 |
+
delete_gate_logits=None,
|
| 823 |
+
hard_delete=None,
|
| 824 |
+
deletion_threshold=None,
|
| 825 |
+
#### NEW CODE ####
|
| 826 |
+
):
|
| 827 |
+
# Model parallel
|
| 828 |
+
if self.model_parallel:
|
| 829 |
+
torch.cuda.set_device(self.first_device)
|
| 830 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
| 831 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 832 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 833 |
+
output_hidden_states = (
|
| 834 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 835 |
+
)
|
| 836 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 837 |
+
|
| 838 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 839 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
| 840 |
+
raise ValueError(
|
| 841 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
| 842 |
+
)
|
| 843 |
+
elif input_ids is not None:
|
| 844 |
+
input_shape = input_ids.size()
|
| 845 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 846 |
+
elif inputs_embeds is not None:
|
| 847 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 848 |
+
else:
|
| 849 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
| 850 |
+
raise ValueError(
|
| 851 |
+
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
| 852 |
+
|
| 853 |
+
if inputs_embeds is None:
|
| 854 |
+
if self.embed_tokens is None:
|
| 855 |
+
raise ValueError(
|
| 856 |
+
"You have to initialize the model with valid token embeddings")
|
| 857 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 858 |
+
|
| 859 |
+
#### NEW CODE ####
|
| 860 |
+
if self.absolute_pos_embed is not None:
|
| 861 |
+
position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=inputs_embeds.device)
|
| 862 |
+
position_embeds = self.absolute_pos_embed(position_ids)
|
| 863 |
+
inputs_embeds = inputs_embeds + position_embeds
|
| 864 |
+
#### NEW CODE ####
|
| 865 |
+
|
| 866 |
+
batch_size, seq_length = input_shape
|
| 867 |
+
|
| 868 |
+
# required mask seq length can be calculated via length of past
|
| 869 |
+
mask_seq_length = past_key_values[0][0].shape[2] + \
|
| 870 |
+
seq_length if past_key_values is not None else seq_length
|
| 871 |
+
|
| 872 |
+
if use_cache is True:
|
| 873 |
+
if not self.is_decoder:
|
| 874 |
+
raise ValueError(
|
| 875 |
+
f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
| 876 |
+
|
| 877 |
+
# initialize past_key_values with `None` if past does not exist
|
| 878 |
+
if past_key_values is None:
|
| 879 |
+
past_key_values = [None] * len(self.block)
|
| 880 |
+
|
| 881 |
+
if attention_mask is None:
|
| 882 |
+
attention_mask = torch.ones(
|
| 883 |
+
batch_size, mask_seq_length, device=inputs_embeds.device)
|
| 884 |
+
|
| 885 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 886 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 887 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
| 888 |
+
attention_mask, input_shape)
|
| 889 |
+
|
| 890 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 891 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 892 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 893 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 894 |
+
encoder_hidden_shape = (
|
| 895 |
+
encoder_batch_size, encoder_sequence_length)
|
| 896 |
+
if encoder_attention_mask is None:
|
| 897 |
+
encoder_attention_mask = torch.ones(
|
| 898 |
+
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
|
| 899 |
+
)
|
| 900 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
| 901 |
+
encoder_attention_mask)
|
| 902 |
+
else:
|
| 903 |
+
encoder_extended_attention_mask = None
|
| 904 |
+
|
| 905 |
+
if self.gradient_checkpointing and self.training:
|
| 906 |
+
if use_cache:
|
| 907 |
+
logger.warning_once(
|
| 908 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 909 |
+
)
|
| 910 |
+
use_cache = False
|
| 911 |
+
|
| 912 |
+
#### NEW CODE ####
|
| 913 |
+
# Return a new encoder attention mask if hard delete is enabled
|
| 914 |
+
attention_mask_to_return = None
|
| 915 |
+
#### NEW CODE ####
|
| 916 |
+
|
| 917 |
+
# Prepare head mask if needed
|
| 918 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
| 919 |
+
cross_attn_head_mask = self.get_head_mask(
|
| 920 |
+
cross_attn_head_mask, self.config.num_layers)
|
| 921 |
+
present_key_value_states = () if use_cache else None
|
| 922 |
+
all_hidden_states = () if output_hidden_states else None
|
| 923 |
+
all_attentions = () if output_attentions else None
|
| 924 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
| 925 |
+
position_bias = None
|
| 926 |
+
encoder_decoder_position_bias = None
|
| 927 |
+
|
| 928 |
+
#### NEW CODE ####
|
| 929 |
+
all_queries = () if output_attentions else None
|
| 930 |
+
all_keys = () if output_attentions else None
|
| 931 |
+
all_values = () if output_attentions else None
|
| 932 |
+
all_scores = () if output_attentions else None
|
| 933 |
+
all_cross_attn_queries = () if (output_attentions and self.is_decoder) else None
|
| 934 |
+
all_cross_attn_keys = () if (output_attentions and self.is_decoder) else None
|
| 935 |
+
all_cross_attn_values = () if (output_attentions and self.is_decoder) else None
|
| 936 |
+
all_cross_attn_scores = () if (output_attentions and self.is_decoder) else None
|
| 937 |
+
#### NEW CODE ####
|
| 938 |
+
|
| 939 |
+
hidden_states = self.dropout(inputs_embeds)
|
| 940 |
+
|
| 941 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
| 942 |
+
layer_head_mask = head_mask[i]
|
| 943 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
| 944 |
+
# Model parallel
|
| 945 |
+
if self.model_parallel:
|
| 946 |
+
torch.cuda.set_device(hidden_states.device)
|
| 947 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
| 948 |
+
if attention_mask is not None:
|
| 949 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 950 |
+
if position_bias is not None:
|
| 951 |
+
position_bias = position_bias.to(hidden_states.device)
|
| 952 |
+
if encoder_hidden_states is not None:
|
| 953 |
+
encoder_hidden_states = encoder_hidden_states.to(
|
| 954 |
+
hidden_states.device)
|
| 955 |
+
if encoder_extended_attention_mask is not None:
|
| 956 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(
|
| 957 |
+
hidden_states.device)
|
| 958 |
+
if encoder_decoder_position_bias is not None:
|
| 959 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
| 960 |
+
hidden_states.device)
|
| 961 |
+
if layer_head_mask is not None:
|
| 962 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
| 963 |
+
if cross_attn_layer_head_mask is not None:
|
| 964 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
| 965 |
+
hidden_states.device)
|
| 966 |
+
if output_hidden_states:
|
| 967 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 968 |
+
|
| 969 |
+
if self.gradient_checkpointing and self.training:
|
| 970 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 971 |
+
layer_module.forward,
|
| 972 |
+
hidden_states,
|
| 973 |
+
extended_attention_mask,
|
| 974 |
+
position_bias,
|
| 975 |
+
encoder_hidden_states,
|
| 976 |
+
encoder_extended_attention_mask,
|
| 977 |
+
encoder_decoder_position_bias,
|
| 978 |
+
layer_head_mask,
|
| 979 |
+
cross_attn_layer_head_mask,
|
| 980 |
+
None, # past_key_value is always None with gradient checkpointing
|
| 981 |
+
use_cache,
|
| 982 |
+
output_attentions,
|
| 983 |
+
#### NEW CODE ####
|
| 984 |
+
delete_gate_mask,
|
| 985 |
+
#### NEW CODE ####
|
| 986 |
+
)
|
| 987 |
+
else:
|
| 988 |
+
layer_outputs = layer_module(
|
| 989 |
+
hidden_states,
|
| 990 |
+
attention_mask=extended_attention_mask,
|
| 991 |
+
position_bias=position_bias,
|
| 992 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 993 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 994 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
| 995 |
+
layer_head_mask=layer_head_mask,
|
| 996 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
| 997 |
+
past_key_value=past_key_value,
|
| 998 |
+
use_cache=use_cache,
|
| 999 |
+
output_attentions=output_attentions,
|
| 1000 |
+
#### NEW CODE ####
|
| 1001 |
+
delete_gate_mask=delete_gate_mask,
|
| 1002 |
+
input_ids=input_ids,
|
| 1003 |
+
hard_delete=hard_delete,
|
| 1004 |
+
deletion_threshold=deletion_threshold,
|
| 1005 |
+
#### NEW CODE ####
|
| 1006 |
+
)
|
| 1007 |
+
|
| 1008 |
+
#### NEW CODE ####
|
| 1009 |
+
# Update delete_gate_mask if the previous layer had a delete gate
|
| 1010 |
+
if layer_module.has_delete_gate:
|
| 1011 |
+
delete_gate_output, delete_gate_logits, delete_gate_mask, new_attention_mask = layer_outputs[-4], layer_outputs[-3], layer_outputs[-2], layer_outputs[-1]
|
| 1012 |
+
|
| 1013 |
+
# Update resized masks if the previous layer did a hard deletion
|
| 1014 |
+
if hard_delete:
|
| 1015 |
+
extended_attention_mask = new_attention_mask
|
| 1016 |
+
attention_mask_to_return = extended_attention_mask.squeeze(-2).squeeze(-2)
|
| 1017 |
+
attention_mask_to_return = (attention_mask_to_return == 0).int()
|
| 1018 |
+
|
| 1019 |
+
#### NEW CODE ####
|
| 1020 |
+
|
| 1021 |
+
# layer_outputs is a tuple with:
|
| 1022 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
| 1023 |
+
if use_cache is False:
|
| 1024 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
| 1025 |
+
|
| 1026 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
| 1027 |
+
|
| 1028 |
+
# We share the position biases between the layers - the first layer store them
|
| 1029 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
| 1030 |
+
# (cross-attention position bias), (cross-attention weights)
|
| 1031 |
+
position_bias = layer_outputs[2]
|
| 1032 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 1033 |
+
#### NEW CODE ####
|
| 1034 |
+
index = 4 if output_attentions else 3
|
| 1035 |
+
encoder_decoder_position_bias = layer_outputs[index]
|
| 1036 |
+
#### NEW CODE ####
|
| 1037 |
+
# append next layer key value states
|
| 1038 |
+
if use_cache:
|
| 1039 |
+
present_key_value_states = present_key_value_states + \
|
| 1040 |
+
(present_key_value_state,)
|
| 1041 |
+
|
| 1042 |
+
#### NEW CODE ####
|
| 1043 |
+
if output_attentions:
|
| 1044 |
+
attn_weights, keys, queries, values, scores = layer_outputs[3]
|
| 1045 |
+
all_attentions = all_attentions + (attn_weights,)
|
| 1046 |
+
all_queries = all_queries + (queries,)
|
| 1047 |
+
all_keys = all_keys + (keys,)
|
| 1048 |
+
all_values = all_values + (values,)
|
| 1049 |
+
all_scores = all_scores + (scores,)
|
| 1050 |
+
|
| 1051 |
+
if self.is_decoder:
|
| 1052 |
+
cross_attn_weights, cross_attn_keys, cross_attn_queries, \
|
| 1053 |
+
cross_attn_values, cross_attn_scores = layer_outputs[5]
|
| 1054 |
+
all_cross_attentions = all_cross_attentions + \
|
| 1055 |
+
(cross_attn_weights,)
|
| 1056 |
+
all_cross_attn_queries = all_cross_attn_queries + \
|
| 1057 |
+
(cross_attn_queries,)
|
| 1058 |
+
all_cross_attn_keys = all_cross_attn_keys + \
|
| 1059 |
+
(cross_attn_keys,)
|
| 1060 |
+
all_cross_attn_values = all_cross_attn_values + \
|
| 1061 |
+
(cross_attn_values,)
|
| 1062 |
+
all_cross_attn_scores = all_cross_attn_scores + \
|
| 1063 |
+
(cross_attn_scores,)
|
| 1064 |
+
#### NEW CODE ####
|
| 1065 |
+
|
| 1066 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 1067 |
+
if self.model_parallel:
|
| 1068 |
+
for k, v in self.device_map.items():
|
| 1069 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 1070 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 1071 |
+
|
| 1072 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
| 1073 |
+
hidden_states = self.dropout(hidden_states)
|
| 1074 |
+
|
| 1075 |
+
# Add last layer
|
| 1076 |
+
if output_hidden_states:
|
| 1077 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1078 |
+
|
| 1079 |
+
if not return_dict:
|
| 1080 |
+
return tuple(
|
| 1081 |
+
v
|
| 1082 |
+
for v in [
|
| 1083 |
+
hidden_states,
|
| 1084 |
+
present_key_value_states,
|
| 1085 |
+
all_hidden_states,
|
| 1086 |
+
all_attentions,
|
| 1087 |
+
all_cross_attentions,
|
| 1088 |
+
#### NEW CODE ####
|
| 1089 |
+
delete_gate_mask,
|
| 1090 |
+
delete_gate_output,
|
| 1091 |
+
delete_gate_logits,
|
| 1092 |
+
attention_mask_to_return,
|
| 1093 |
+
all_queries,
|
| 1094 |
+
all_keys,
|
| 1095 |
+
all_values,
|
| 1096 |
+
all_scores,
|
| 1097 |
+
all_cross_attn_queries,
|
| 1098 |
+
all_cross_attn_keys,
|
| 1099 |
+
all_cross_attn_values,
|
| 1100 |
+
all_cross_attn_scores,
|
| 1101 |
+
#### NEW CODE ####
|
| 1102 |
+
]
|
| 1103 |
+
if v is not None
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
return MrT5BaseModelOutputWithPastAndCrossAttentions(
|
| 1107 |
+
last_hidden_state=hidden_states,
|
| 1108 |
+
past_key_values=present_key_value_states,
|
| 1109 |
+
hidden_states=all_hidden_states,
|
| 1110 |
+
attentions=all_attentions,
|
| 1111 |
+
cross_attentions=all_cross_attentions,
|
| 1112 |
+
#### NEW CODE ####
|
| 1113 |
+
delete_gate_mask=delete_gate_mask,
|
| 1114 |
+
delete_gate_output=delete_gate_output,
|
| 1115 |
+
delete_gate_logits=delete_gate_logits,
|
| 1116 |
+
attention_mask=attention_mask_to_return,
|
| 1117 |
+
attention_queries=all_queries,
|
| 1118 |
+
attention_keys=all_keys,
|
| 1119 |
+
attention_values=all_values,
|
| 1120 |
+
attention_scores=all_scores,
|
| 1121 |
+
cross_attention_queries=all_cross_attn_queries,
|
| 1122 |
+
cross_attention_keys=all_cross_attn_keys,
|
| 1123 |
+
cross_attention_values=all_cross_attn_values,
|
| 1124 |
+
cross_attention_scores=all_cross_attn_scores,
|
| 1125 |
+
#### NEW CODE ####
|
| 1126 |
+
)
|
| 1127 |
+
|
| 1128 |
+
|
| 1129 |
+
class MrT5ForConditionalGeneration(T5ForConditionalGeneration):
|
| 1130 |
+
|
| 1131 |
+
config_class = MrT5Config
|
| 1132 |
+
|
| 1133 |
+
def __init__(self, config: MrT5Config):
|
| 1134 |
+
super().__init__(config)
|
| 1135 |
+
#### NEW CODE ####
|
| 1136 |
+
encoder_config = copy.deepcopy(config)
|
| 1137 |
+
encoder_config.is_decoder = False
|
| 1138 |
+
encoder_config.use_cache = False
|
| 1139 |
+
encoder_config.is_encoder_decoder = False
|
| 1140 |
+
self.encoder = MrT5Stack(encoder_config, self.shared)
|
| 1141 |
+
|
| 1142 |
+
decoder_config = copy.deepcopy(config)
|
| 1143 |
+
decoder_config.is_decoder = True
|
| 1144 |
+
decoder_config.is_encoder_decoder = False
|
| 1145 |
+
decoder_config.num_layers = config.num_decoder_layers
|
| 1146 |
+
self.decoder = MrT5Stack(decoder_config, self.shared)
|
| 1147 |
+
#### NEW CODE ####
|
| 1148 |
+
|
| 1149 |
+
def forward(
|
| 1150 |
+
self,
|
| 1151 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1152 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1153 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
| 1154 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
| 1155 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1156 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
| 1157 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
| 1158 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1159 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1160 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1161 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1162 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1163 |
+
use_cache: Optional[bool] = None,
|
| 1164 |
+
output_attentions: Optional[bool] = None,
|
| 1165 |
+
output_hidden_states: Optional[bool] = None,
|
| 1166 |
+
return_dict: Optional[bool] = None,
|
| 1167 |
+
#### NEW CODE ####
|
| 1168 |
+
hard_delete: bool = False,
|
| 1169 |
+
deletion_threshold: Optional[float] = None,
|
| 1170 |
+
#### NEW CODE ####
|
| 1171 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
| 1172 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1173 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1174 |
+
|
| 1175 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
| 1176 |
+
if head_mask is not None and decoder_head_mask is None:
|
| 1177 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
| 1178 |
+
decoder_head_mask = head_mask
|
| 1179 |
+
|
| 1180 |
+
# Encode if needed (training, first prediction pass)
|
| 1181 |
+
if encoder_outputs is None:
|
| 1182 |
+
# Convert encoder inputs in embeddings if needed
|
| 1183 |
+
encoder_outputs = self.encoder(
|
| 1184 |
+
input_ids=input_ids,
|
| 1185 |
+
attention_mask=attention_mask,
|
| 1186 |
+
inputs_embeds=inputs_embeds,
|
| 1187 |
+
head_mask=head_mask,
|
| 1188 |
+
output_attentions=output_attentions,
|
| 1189 |
+
output_hidden_states=output_hidden_states,
|
| 1190 |
+
return_dict=return_dict,
|
| 1191 |
+
#### NEW CODE ####
|
| 1192 |
+
hard_delete=hard_delete,
|
| 1193 |
+
deletion_threshold=deletion_threshold,
|
| 1194 |
+
#### NEW CODE ####
|
| 1195 |
+
)
|
| 1196 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
| 1197 |
+
#### NEW CODE ####
|
| 1198 |
+
encoder_outputs = MrT5BaseModelOutputWithPastAndCrossAttentions(
|
| 1199 |
+
last_hidden_state=encoder_outputs.last_hidden_state,
|
| 1200 |
+
hidden_states=encoder_outputs.hidden_states if 'hidden_states' in encoder_outputs else None,
|
| 1201 |
+
attentions=encoder_outputs.attentions if 'attentions' in encoder_outputs else None,
|
| 1202 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask if 'delete_gate_mask' in encoder_outputs else None,
|
| 1203 |
+
)
|
| 1204 |
+
#### NEW CODE ####
|
| 1205 |
+
|
| 1206 |
+
#### NEW CODE ####
|
| 1207 |
+
|
| 1208 |
+
hidden_states = encoder_outputs.last_hidden_state
|
| 1209 |
+
attention_mask = encoder_outputs.attention_mask if 'attention_mask' in encoder_outputs else attention_mask
|
| 1210 |
+
|
| 1211 |
+
#### NEW CODE ####
|
| 1212 |
+
|
| 1213 |
+
if self.model_parallel:
|
| 1214 |
+
torch.cuda.set_device(self.decoder.first_device)
|
| 1215 |
+
|
| 1216 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
| 1217 |
+
# get decoder inputs from shifting lm labels to the right
|
| 1218 |
+
decoder_input_ids = self._shift_right(labels)
|
| 1219 |
+
|
| 1220 |
+
# Set device for model parallelism
|
| 1221 |
+
if self.model_parallel:
|
| 1222 |
+
torch.cuda.set_device(self.decoder.first_device)
|
| 1223 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
| 1224 |
+
if decoder_input_ids is not None:
|
| 1225 |
+
decoder_input_ids = decoder_input_ids.to(
|
| 1226 |
+
self.decoder.first_device)
|
| 1227 |
+
if attention_mask is not None:
|
| 1228 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
| 1229 |
+
if decoder_attention_mask is not None:
|
| 1230 |
+
decoder_attention_mask = decoder_attention_mask.to(
|
| 1231 |
+
self.decoder.first_device)
|
| 1232 |
+
|
| 1233 |
+
# Decode
|
| 1234 |
+
decoder_outputs = self.decoder(
|
| 1235 |
+
input_ids=decoder_input_ids,
|
| 1236 |
+
attention_mask=decoder_attention_mask,
|
| 1237 |
+
inputs_embeds=decoder_inputs_embeds,
|
| 1238 |
+
past_key_values=past_key_values,
|
| 1239 |
+
encoder_hidden_states=hidden_states,
|
| 1240 |
+
encoder_attention_mask=attention_mask,
|
| 1241 |
+
head_mask=decoder_head_mask,
|
| 1242 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
| 1243 |
+
use_cache=use_cache,
|
| 1244 |
+
output_attentions=output_attentions,
|
| 1245 |
+
output_hidden_states=output_hidden_states,
|
| 1246 |
+
return_dict=return_dict,
|
| 1247 |
+
#### NEW CODE ####
|
| 1248 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask,
|
| 1249 |
+
#### NEW CODE ####
|
| 1250 |
+
)
|
| 1251 |
+
|
| 1252 |
+
sequence_output = decoder_outputs[0]
|
| 1253 |
+
|
| 1254 |
+
# Set device for model parallelism
|
| 1255 |
+
if self.model_parallel:
|
| 1256 |
+
torch.cuda.set_device(self.encoder.first_device)
|
| 1257 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
| 1258 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
| 1259 |
+
|
| 1260 |
+
if self.config.tie_word_embeddings:
|
| 1261 |
+
# Rescale output before projecting on vocab
|
| 1262 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
| 1263 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
| 1264 |
+
|
| 1265 |
+
lm_logits = self.lm_head(sequence_output)
|
| 1266 |
+
|
| 1267 |
+
loss = None
|
| 1268 |
+
if labels is not None:
|
| 1269 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
| 1270 |
+
# move labels to correct device to enable PP
|
| 1271 |
+
labels = labels.to(lm_logits.device)
|
| 1272 |
+
loss = loss_fct(
|
| 1273 |
+
lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
| 1274 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
| 1275 |
+
|
| 1276 |
+
if not return_dict:
|
| 1277 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
| 1278 |
+
return ((loss,) + output) if loss is not None else output
|
| 1279 |
+
|
| 1280 |
+
##### NEW CODE #####
|
| 1281 |
+
return MrT5Seq2SeqLMOutput(
|
| 1282 |
+
loss=loss,
|
| 1283 |
+
logits=lm_logits,
|
| 1284 |
+
past_key_values=decoder_outputs.past_key_values,
|
| 1285 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
| 1286 |
+
decoder_attentions=decoder_outputs.attentions,
|
| 1287 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
| 1288 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
| 1289 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
| 1290 |
+
encoder_attentions=encoder_outputs.attentions,
|
| 1291 |
+
delete_gate_mask=encoder_outputs.delete_gate_mask,
|
| 1292 |
+
delete_gate_output=encoder_outputs.delete_gate_output,
|
| 1293 |
+
delete_gate_logits=encoder_outputs.delete_gate_logits,
|
| 1294 |
+
encoder_keys=encoder_outputs.attention_keys,
|
| 1295 |
+
encoder_queries=encoder_outputs.attention_queries,
|
| 1296 |
+
encoder_values=encoder_outputs.attention_values,
|
| 1297 |
+
encoder_scores=encoder_outputs.attention_scores,
|
| 1298 |
+
decoder_keys=decoder_outputs.attention_keys,
|
| 1299 |
+
decoder_queries=decoder_outputs.attention_queries,
|
| 1300 |
+
decoder_values=decoder_outputs.attention_values,
|
| 1301 |
+
decoder_scores=decoder_outputs.attention_scores,
|
| 1302 |
+
cross_attention_queries=decoder_outputs.cross_attention_queries,
|
| 1303 |
+
cross_attention_keys=decoder_outputs.cross_attention_keys,
|
| 1304 |
+
cross_attention_values=decoder_outputs.cross_attention_values,
|
| 1305 |
+
cross_attention_scores=decoder_outputs.cross_attention_scores,
|
| 1306 |
+
)
|
| 1307 |
+
##### NEW CODE #####
|
| 1308 |
+
|
| 1309 |
+
def prepare_inputs_for_generation(
|
| 1310 |
+
self,
|
| 1311 |
+
input_ids,
|
| 1312 |
+
past_key_values=None,
|
| 1313 |
+
attention_mask=None,
|
| 1314 |
+
head_mask=None,
|
| 1315 |
+
decoder_head_mask=None,
|
| 1316 |
+
decoder_attention_mask=None,
|
| 1317 |
+
cross_attn_head_mask=None,
|
| 1318 |
+
use_cache=None,
|
| 1319 |
+
encoder_outputs=None,
|
| 1320 |
+
**kwargs,
|
| 1321 |
+
):
|
| 1322 |
+
# cut decoder_input_ids if past_key_values is used
|
| 1323 |
+
if past_key_values is not None:
|
| 1324 |
+
past_length = past_key_values[0][0].shape[2]
|
| 1325 |
+
|
| 1326 |
+
# Some generation methods already pass only the last input ID
|
| 1327 |
+
if input_ids.shape[1] > past_length:
|
| 1328 |
+
remove_prefix_length = past_length
|
| 1329 |
+
else:
|
| 1330 |
+
# Default to old behavior: keep only final ID
|
| 1331 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1332 |
+
|
| 1333 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1334 |
+
|
| 1335 |
+
##### NEW CODE #####
|
| 1336 |
+
# TODO: Generation will need special handling of attention masks, which
|
| 1337 |
+
# will need to be resized if hard delete is enabled. For now, we will
|
| 1338 |
+
# simply omit the encoder attention mask for generation.
|
| 1339 |
+
attention_mask = None
|
| 1340 |
+
##### NEW CODE #####
|
| 1341 |
+
|
| 1342 |
+
return {
|
| 1343 |
+
"decoder_input_ids": input_ids,
|
| 1344 |
+
"past_key_values": past_key_values,
|
| 1345 |
+
"encoder_outputs": encoder_outputs,
|
| 1346 |
+
"attention_mask": attention_mask,
|
| 1347 |
+
"head_mask": head_mask,
|
| 1348 |
+
"decoder_head_mask": decoder_head_mask,
|
| 1349 |
+
"decoder_attention_mask": decoder_attention_mask,
|
| 1350 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
| 1351 |
+
"use_cache": use_cache,
|
| 1352 |
+
}
|