Spaces:
Runtime error
Runtime error
| import argparse | |
| import hashlib | |
| import json | |
| import os | |
| import time | |
| from threading import Thread | |
| import logging | |
| import gradio as gr | |
| import torch | |
| from tinyllava.model.builder import load_pretrained_model | |
| from tinyllava.mm_utils import ( | |
| KeywordsStoppingCriteria, | |
| load_image_from_base64, | |
| process_images, | |
| tokenizer_image_token, | |
| get_model_name_from_path, | |
| ) | |
| from PIL import Image | |
| from io import BytesIO | |
| import base64 | |
| import torch | |
| from transformers import StoppingCriteria | |
| from tinyllava.constants import ( | |
| DEFAULT_IM_END_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IMAGE_TOKEN, | |
| IMAGE_TOKEN_INDEX, | |
| ) | |
| from tinyllava.conversation import SeparatorStyle, conv_templates, default_conversation | |
| from transformers import TextIteratorStreamer | |
| from pathlib import Path | |
| DEFAULT_MODEL_PATH = "bczhou/TinyLLaVA-3.1B" | |
| DEFAULT_MODEL_NAME = "TinyLLaVA-3.1B" | |
| block_css = """ | |
| #buttons button { | |
| min-width: min(120px,100%); | |
| } | |
| """ | |
| title_markdown = """ | |
| # TinyLLaVA: A Framework of Small-scale Large Multimodal Models | |
| [[Code](https://github.com/DLCV-BUAA/TinyLLaVABench)] | π [[Paper](https://arxiv.org/pdf/2402.14289.pdf)] | |
| """ | |
| tos_markdown = """ | |
| ### Terms of use | |
| By using this service, users are required to agree to the following terms: | |
| The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
| For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
| """ | |
| learn_more_markdown = """ | |
| ### License | |
| The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
| """ | |
| ack_markdown = """ | |
| ### Acknowledgement | |
| The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community! | |
| """ | |
| def regenerate(state, image_process_mode): | |
| state.messages[-1][-1] = None | |
| prev_human_msg = state.messages[-2] | |
| if type(prev_human_msg[1]) in (tuple, list): | |
| prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
| state.skip_next = False | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def clear_history(): | |
| state = default_conversation.copy() | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def add_text(state, text, image, image_process_mode): | |
| if len(text) <= 0 and image is None: | |
| state.skip_next = True | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| text = text[:1536] # Hard cut-off | |
| if image is not None: | |
| text = text[:1200] # Hard cut-off for images | |
| if "<image>" not in text: | |
| # text = '<Image><image></Image>' + text | |
| text = text + "\n<image>" | |
| text = (text, image, image_process_mode) | |
| if len(state.get_images(return_pil=True)) > 0: | |
| state = default_conversation.copy() | |
| state.append_message(state.roles[0], text) | |
| state.append_message(state.roles[1], None) | |
| state.skip_next = False | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def load_demo(): | |
| state = default_conversation.copy() | |
| return state | |
| def get_response(params): | |
| prompt = params["prompt"] | |
| ori_prompt = prompt | |
| images = params.get("images", None) | |
| num_image_tokens = 0 | |
| if images is not None and len(images) > 0: | |
| if len(images) > 0: | |
| if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
| raise ValueError( | |
| "Number of images does not match number of <image> tokens in prompt" | |
| ) | |
| images = [load_image_from_base64(image) for image in images] | |
| images = process_images(images, image_processor, model.config) | |
| if type(images) is list: | |
| images = [ | |
| image.to(model.device, dtype=torch.float16) for image in images | |
| ] | |
| else: | |
| images = images.to(model.device, dtype=torch.float16) | |
| replace_token = DEFAULT_IMAGE_TOKEN | |
| if getattr(model.config, "mm_use_im_start_end", False): | |
| replace_token = ( | |
| DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
| ) | |
| prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
| num_image_tokens = ( | |
| prompt.count(replace_token) * model.get_vision_tower().num_patches | |
| ) | |
| else: | |
| images = None | |
| image_args = {"images": images} | |
| else: | |
| images = None | |
| image_args = {} | |
| temperature = float(params.get("temperature", 1.0)) | |
| top_p = float(params.get("top_p", 1.0)) | |
| max_context_length = getattr(model.config, "max_position_embeddings", 2048) | |
| max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
| stop_str = params.get("stop", None) | |
| do_sample = True if temperature > 0.001 else False | |
| logger.info(prompt) | |
| input_ids = ( | |
| tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| .unsqueeze(0) | |
| .to(model.device) | |
| ) | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15 | |
| ) | |
| max_new_tokens = min( | |
| max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens | |
| ) | |
| if max_new_tokens < 1: | |
| yield json.dumps( | |
| { | |
| "text": ori_prompt | |
| + "Exceeds max token length. Please start a new conversation, thanks.", | |
| "error_code": 0, | |
| } | |
| ).encode() + b"\0" | |
| return | |
| # local inference | |
| # BUG: If stopping_criteria is set, an error occur: | |
| # RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0 | |
| generate_kwargs = dict( | |
| inputs=input_ids, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| # stopping_criteria=[stopping_criteria], | |
| use_cache=True, | |
| **image_args, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| logger.debug(ori_prompt) | |
| logger.debug(generate_kwargs) | |
| generated_text = ori_prompt | |
| for new_text in streamer: | |
| generated_text += new_text | |
| if generated_text.endswith(stop_str): | |
| generated_text = generated_text[: -len(stop_str)] | |
| yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
| def http_bot(state, temperature, top_p, max_new_tokens): | |
| if state.skip_next: | |
| # This generate call is skipped due to invalid inputs | |
| yield (state, state.to_gradio_chatbot()) | |
| return | |
| if len(state.messages) == state.offset + 2: | |
| # First round of conversation | |
| if "tinyllava" in model_name.lower(): | |
| if "3.1b" in model_name.lower() or "phi" in model_name.lower(): | |
| template_name = "phi" | |
| elif "2.0b" in model_name.lower() or "stablelm" in model_name.lower(): | |
| template_name = "phi" | |
| elif "qwen" in model_name.lower(): | |
| template_name = "qwen" | |
| else: | |
| template_name = "v1" | |
| elif "llava" in model_name.lower(): | |
| if "llama-2" in model_name.lower(): | |
| template_name = "llava_llama_2" | |
| elif "v1" in model_name.lower(): | |
| if "mmtag" in model_name.lower(): | |
| template_name = "v1_mmtag" | |
| elif ( | |
| "plain" in model_name.lower() | |
| and "finetune" not in model_name.lower() | |
| ): | |
| template_name = "v1_mmtag" | |
| else: | |
| template_name = "llava_v1" | |
| elif "mpt" in model_name.lower(): | |
| template_name = "mpt" | |
| else: | |
| if "mmtag" in model_name.lower(): | |
| template_name = "v0_mmtag" | |
| elif ( | |
| "plain" in model_name.lower() | |
| and "finetune" not in model_name.lower() | |
| ): | |
| template_name = "v0_mmtag" | |
| else: | |
| template_name = "llava_v0" | |
| elif "mpt" in model_name: | |
| template_name = "mpt_text" | |
| elif "llama-2" in model_name: | |
| template_name = "llama_2" | |
| else: | |
| template_name = "vicuna_v1" | |
| new_state = conv_templates[template_name].copy() | |
| new_state.append_message(new_state.roles[0], state.messages[-2][1]) | |
| new_state.append_message(new_state.roles[1], None) | |
| state = new_state | |
| # Construct prompt | |
| prompt = state.get_prompt() | |
| all_images = state.get_images(return_pil=True) | |
| all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] | |
| # Make requests | |
| # pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), | |
| # "max_new_tokens": min(int(max_new_tokens), 1536), "stop": ( | |
| # state.sep | |
| # if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
| # else state.sep2 | |
| # ), "images": state.get_images()} | |
| pload = { | |
| "model": model_name, | |
| "prompt": prompt, | |
| "temperature": float(temperature), | |
| "top_p": float(top_p), | |
| "max_new_tokens": min(int(max_new_tokens), 1536), | |
| "stop": ( | |
| state.sep | |
| if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
| else state.sep2 | |
| ), "images": state.get_images()} | |
| state.messages[-1][-1] = "β" | |
| yield (state, state.to_gradio_chatbot()) | |
| # for stream | |
| output = get_response(pload) | |
| for chunk in output: | |
| if chunk: | |
| data = json.loads(chunk.decode()) | |
| if data["error_code"] == 0: | |
| output = data["text"][len(prompt) :].strip() | |
| state.messages[-1][-1] = output + "β" | |
| yield (state, state.to_gradio_chatbot()) | |
| else: | |
| output = data["text"] + f" (error_code: {data['error_code']})" | |
| state.messages[-1][-1] = output | |
| yield (state, state.to_gradio_chatbot()) | |
| return | |
| time.sleep(0.03) | |
| state.messages[-1][-1] = state.messages[-1][-1][:-1] | |
| yield (state, state.to_gradio_chatbot()) | |
| def build_demo(): | |
| textbox = gr.Textbox( | |
| show_label=False, placeholder="Enter text and press ENTER", container=False | |
| ) | |
| with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo: | |
| state = gr.State() | |
| gr.Markdown(title_markdown) | |
| with gr.Row(): | |
| with gr.Column(scale=5): | |
| with gr.Row(elem_id="Model ID"): | |
| gr.Dropdown( | |
| choices=[DEFAULT_MODEL_NAME], | |
| value=DEFAULT_MODEL_NAME, | |
| interactive=True, | |
| label="Model ID", | |
| container=False, | |
| ) | |
| imagebox = gr.Image(type="pil") | |
| image_process_mode = gr.Radio( | |
| ["Crop", "Resize", "Pad", "Default"], | |
| value="Default", | |
| label="Preprocess for non-square image", | |
| visible=False, | |
| ) | |
| # cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
| cur_dir = Path(__file__).parent | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| f"{cur_dir}/examples/extreme_ironing.jpg", | |
| "What is unusual about this image?", | |
| ], | |
| [ | |
| f"{cur_dir}/examples/waterview.jpg", | |
| "What are the things I should be cautious about when I visit here?", | |
| ], | |
| ], | |
| inputs=[imagebox, textbox], | |
| ) | |
| with gr.Accordion("Parameters", open=False) as _: | |
| temperature = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.2, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.7, | |
| step=0.1, | |
| interactive=True, | |
| label="Top P", | |
| ) | |
| max_output_tokens = gr.Slider( | |
| minimum=0, | |
| maximum=1024, | |
| value=512, | |
| step=64, | |
| interactive=True, | |
| label="Max output tokens", | |
| ) | |
| with gr.Column(scale=8): | |
| chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) | |
| with gr.Row(): | |
| with gr.Column(scale=8): | |
| textbox.render() | |
| with gr.Column(scale=1, min_width=50): | |
| submit_btn = gr.Button(value="Send", variant="primary") | |
| with gr.Row(elem_id="buttons") as _: | |
| regenerate_btn = gr.Button(value="π Regenerate", interactive=True) | |
| clear_btn = gr.Button(value="ποΈ Clear", interactive=True) | |
| gr.Markdown(tos_markdown) | |
| gr.Markdown(learn_more_markdown) | |
| gr.Markdown(ack_markdown) | |
| regenerate_btn.click( | |
| regenerate, | |
| [state, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| clear_btn.click( | |
| clear_history, None, [state, chatbot, textbox, imagebox], queue=False | |
| ) | |
| textbox.submit( | |
| add_text, | |
| [state, textbox, imagebox, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| submit_btn.click( | |
| add_text, | |
| [state, textbox, imagebox, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| demo.load(load_demo, None, [state], queue=False) | |
| return demo | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default=None) | |
| parser.add_argument("--port", type=int, default=None) | |
| parser.add_argument("--share", default=None) | |
| parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) | |
| parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME) | |
| parser.add_argument("--load-8bit", action="store_true") | |
| parser.add_argument("--load-4bit", action="store_true") | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == "__main__": | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
| ) | |
| logger = logging.getLogger(__name__) | |
| logger.info(gr.__version__) | |
| args = parse_args() | |
| model_name = args.model_name | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| model_path=args.model_path, | |
| model_base=None, | |
| model_name=args.model_name, | |
| load_4bit=args.load_4bit, | |
| load_8bit=args.load_8bit | |
| ) | |
| demo = build_demo() | |
| demo.queue() | |
| demo.launch(server_name=args.host, server_port=args.port, share=args.share) | |