Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,87 +1,3 @@
|
|
| 1 |
-
# import torch
|
| 2 |
-
# import numpy as np
|
| 3 |
-
# import soundfile as sf
|
| 4 |
-
# from transformers import pipeline
|
| 5 |
-
# from transformers import BarkModel
|
| 6 |
-
# from transformers import AutoProcessor
|
| 7 |
-
|
| 8 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
-
|
| 10 |
-
# pipe = pipeline(
|
| 11 |
-
# "automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 12 |
-
# )
|
| 13 |
-
# label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
| 14 |
-
# processor = AutoProcessor.from_pretrained("suno/bark")
|
| 15 |
-
# model = BarkModel.from_pretrained("suno/bark")
|
| 16 |
-
# model = model.to(device)
|
| 17 |
-
# synthesised_rate = model.generation_config.sample_rate
|
| 18 |
-
|
| 19 |
-
# def translate(audio_file):
|
| 20 |
-
# audio, sampling_rate = sf.read(audio_file)
|
| 21 |
-
# outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
| 22 |
-
# language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
| 23 |
-
# label_outputs = {}
|
| 24 |
-
# for pred in language_prediction:
|
| 25 |
-
# label_outputs[pred["label"]] = pred["score"]
|
| 26 |
-
# return outputs["text"],label_outputs
|
| 27 |
-
# def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 28 |
-
# inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 29 |
-
# speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 30 |
-
# return speech_output
|
| 31 |
-
# def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 32 |
-
# translated_text, label_outputs= translate(audio)
|
| 33 |
-
# synthesised_speech = synthesise(translated_text,voice_preset)
|
| 34 |
-
# synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 35 |
-
# return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs
|
| 36 |
-
|
| 37 |
-
# title = "外国话转中文话"
|
| 38 |
-
# description = """
|
| 39 |
-
# 作为[Hugging Face Audio course](https://huggingface.co/learn/audio-course/chapter0/introduction) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话,一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。
|
| 40 |
-
|
| 41 |
-
# 
|
| 42 |
-
# """
|
| 43 |
-
|
| 44 |
-
# examples = [
|
| 45 |
-
# ["./en.mp3", None],
|
| 46 |
-
# ["./de.mp3", None],
|
| 47 |
-
# ["./fr.mp3", None],
|
| 48 |
-
# ["./it.mp3", None],
|
| 49 |
-
|
| 50 |
-
# ]
|
| 51 |
-
# import gradio as gr
|
| 52 |
-
|
| 53 |
-
# demo = gr.Blocks()
|
| 54 |
-
# file_transcribe = gr.Interface(
|
| 55 |
-
# fn=speech_to_speech_translation,
|
| 56 |
-
# inputs=gr.Audio(source="upload", type="filepath"),
|
| 57 |
-
# outputs=[
|
| 58 |
-
# gr.Audio(label="Generated Speech", type="numpy"),
|
| 59 |
-
# gr.Text(label="Transcription"),
|
| 60 |
-
# gr.Label(label="Language prediction"),
|
| 61 |
-
# ],
|
| 62 |
-
# title=title,
|
| 63 |
-
# description=description,
|
| 64 |
-
# examples=examples,
|
| 65 |
-
# )
|
| 66 |
-
# mic_transcribe = gr.Interface(
|
| 67 |
-
# fn=speech_to_speech_translation,
|
| 68 |
-
# inputs=gr.Audio(source="microphone", type="filepath"),
|
| 69 |
-
# outputs=[
|
| 70 |
-
# gr.Audio(label="Generated Speech", type="numpy"),
|
| 71 |
-
# gr.Text(label="Transcription"),
|
| 72 |
-
# gr.Label(label="Language prediction"),
|
| 73 |
-
# ],
|
| 74 |
-
# title=title,
|
| 75 |
-
# description=description,
|
| 76 |
-
# )
|
| 77 |
-
# with demo:
|
| 78 |
-
# gr.TabbedInterface(
|
| 79 |
-
# [file_transcribe, mic_transcribe],
|
| 80 |
-
# ["Transcribe Audio File", "Transcribe Microphone"],
|
| 81 |
-
# )
|
| 82 |
-
|
| 83 |
-
# demo.launch(share=True)
|
| 84 |
-
###########################################################################################################################
|
| 85 |
import torch
|
| 86 |
import numpy as np
|
| 87 |
import soundfile as sf
|
|
@@ -94,47 +10,46 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
| 94 |
pipe = pipeline(
|
| 95 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 96 |
)
|
| 97 |
-
|
| 98 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
| 99 |
model = BarkModel.from_pretrained("suno/bark")
|
| 100 |
model = model.to(device)
|
| 101 |
synthesised_rate = model.generation_config.sample_rate
|
| 102 |
|
| 103 |
def translate(audio_file):
|
| 104 |
-
|
| 105 |
-
outputs = pipe(
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
return outputs["text"]
|
| 111 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 112 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 113 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 114 |
return speech_output
|
| 115 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 116 |
-
|
| 117 |
-
translated_text = translate(audio)
|
| 118 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
| 119 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 120 |
-
return (synthesised_rate , synthesised_speech.T),translated_text
|
| 121 |
|
| 122 |
title = "外国话转中文话"
|
| 123 |
description = """
|
| 124 |
-
作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse)
|
| 125 |
|
| 126 |

|
| 127 |
"""
|
| 128 |
|
| 129 |
examples = [
|
| 130 |
-
["./en.mp3", None],
|
| 131 |
-
["./de.mp3", None],
|
| 132 |
["./fr.mp3", None],
|
| 133 |
["./it.mp3", None],
|
| 134 |
["./nl.mp3", None],
|
| 135 |
["./fi.mp3", None],
|
| 136 |
-
["./cs.mp3", None],
|
| 137 |
-
["./pl.mp3", None],
|
| 138 |
]
|
| 139 |
import gradio as gr
|
| 140 |
|
|
@@ -145,7 +60,7 @@ file_transcribe = gr.Interface(
|
|
| 145 |
outputs=[
|
| 146 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 147 |
gr.Text(label="Transcription"),
|
| 148 |
-
|
| 149 |
],
|
| 150 |
title=title,
|
| 151 |
description=description,
|
|
@@ -157,7 +72,7 @@ mic_transcribe = gr.Interface(
|
|
| 157 |
outputs=[
|
| 158 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 159 |
gr.Text(label="Transcription"),
|
| 160 |
-
|
| 161 |
],
|
| 162 |
title=title,
|
| 163 |
description=description,
|
|
@@ -168,4 +83,92 @@ with demo:
|
|
| 168 |
["Transcribe Audio File", "Transcribe Microphone"],
|
| 169 |
)
|
| 170 |
|
| 171 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
import soundfile as sf
|
|
|
|
| 10 |
pipe = pipeline(
|
| 11 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 12 |
)
|
| 13 |
+
label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
| 14 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
| 15 |
model = BarkModel.from_pretrained("suno/bark")
|
| 16 |
model = model.to(device)
|
| 17 |
synthesised_rate = model.generation_config.sample_rate
|
| 18 |
|
| 19 |
def translate(audio_file):
|
| 20 |
+
audio, sampling_rate = sf.read(audio_file)
|
| 21 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
| 22 |
+
language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
| 23 |
+
label_outputs = {}
|
| 24 |
+
for pred in language_prediction:
|
| 25 |
+
label_outputs[pred["label"]] = pred["score"]
|
| 26 |
+
return outputs["text"],label_outputs
|
| 27 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 28 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 29 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 30 |
return speech_output
|
| 31 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 32 |
+
translated_text, label_outputs= translate(audio)
|
|
|
|
| 33 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
| 34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 35 |
+
return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs
|
| 36 |
|
| 37 |
title = "外国话转中文话"
|
| 38 |
description = """
|
| 39 |
+
作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话,一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。
|
| 40 |
|
| 41 |

|
| 42 |
"""
|
| 43 |
|
| 44 |
examples = [
|
| 45 |
+
# ["./en.mp3", None],
|
| 46 |
+
# ["./de.mp3", None],
|
| 47 |
["./fr.mp3", None],
|
| 48 |
["./it.mp3", None],
|
| 49 |
["./nl.mp3", None],
|
| 50 |
["./fi.mp3", None],
|
| 51 |
+
# ["./cs.mp3", None],
|
| 52 |
+
# ["./pl.mp3", None],
|
| 53 |
]
|
| 54 |
import gradio as gr
|
| 55 |
|
|
|
|
| 60 |
outputs=[
|
| 61 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 62 |
gr.Text(label="Transcription"),
|
| 63 |
+
gr.Label(label="Language prediction"),
|
| 64 |
],
|
| 65 |
title=title,
|
| 66 |
description=description,
|
|
|
|
| 72 |
outputs=[
|
| 73 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 74 |
gr.Text(label="Transcription"),
|
| 75 |
+
gr.Label(label="Language prediction"),
|
| 76 |
],
|
| 77 |
title=title,
|
| 78 |
description=description,
|
|
|
|
| 83 |
["Transcribe Audio File", "Transcribe Microphone"],
|
| 84 |
)
|
| 85 |
|
| 86 |
+
demo.launch()
|
| 87 |
+
###########################################################################################################################
|
| 88 |
+
# import torch
|
| 89 |
+
# import numpy as np
|
| 90 |
+
# import soundfile as sf
|
| 91 |
+
# from transformers import pipeline
|
| 92 |
+
# from transformers import BarkModel
|
| 93 |
+
# from transformers import AutoProcessor
|
| 94 |
+
|
| 95 |
+
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 96 |
+
|
| 97 |
+
# pipe = pipeline(
|
| 98 |
+
# "automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 99 |
+
# )
|
| 100 |
+
# #label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
| 101 |
+
# processor = AutoProcessor.from_pretrained("suno/bark")
|
| 102 |
+
# model = BarkModel.from_pretrained("suno/bark")
|
| 103 |
+
# model = model.to(device)
|
| 104 |
+
# synthesised_rate = model.generation_config.sample_rate
|
| 105 |
+
|
| 106 |
+
# def translate(audio_file):
|
| 107 |
+
# # audio, sampling_rate = sf.read(audio_file)
|
| 108 |
+
# outputs = pipe(audio_file, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
| 109 |
+
# # language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
| 110 |
+
# # label_outputs = {}
|
| 111 |
+
# # for pred in language_prediction:
|
| 112 |
+
# # label_outputs[pred["label"]] = pred["score"]
|
| 113 |
+
# return outputs["text"]#,label_outputs
|
| 114 |
+
# def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 115 |
+
# inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 116 |
+
# speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 117 |
+
# return speech_output
|
| 118 |
+
# def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 119 |
+
# #translated_text, label_outputs= translate(audio)
|
| 120 |
+
# translated_text = translate(audio)
|
| 121 |
+
# synthesised_speech = synthesise(translated_text,voice_preset)
|
| 122 |
+
# synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 123 |
+
# return (synthesised_rate , synthesised_speech.T),translated_text#,label_outputs
|
| 124 |
+
|
| 125 |
+
# title = "外国话转中文话"
|
| 126 |
+
# description = """
|
| 127 |
+
# 作为[Hugging Face Audio course](https://github.com/danfouer/HFAudioCourse) 的结课大作业,本演示调用了三个自然语言处理的大模型,一个用于将外国话翻译成中文,一个用于判断说的哪个国家的话(CPU演示太慢暂时先去掉了),一个用于将中文转成语音输出。演示同时支持语音上传和麦克风输入,转换速度比较慢因为租不起GPU的服务器(支出增加20倍),建议您通过已经缓存Examples体验效果。欢迎添加我的微信号:ESGGTP 与我的平行人交流。
|
| 128 |
+
|
| 129 |
+
# 
|
| 130 |
+
# """
|
| 131 |
+
|
| 132 |
+
# examples = [
|
| 133 |
+
# ["./en.mp3", None],
|
| 134 |
+
# ["./de.mp3", None],
|
| 135 |
+
# ["./fr.mp3", None],
|
| 136 |
+
# ["./it.mp3", None],
|
| 137 |
+
# ["./nl.mp3", None],
|
| 138 |
+
# ["./fi.mp3", None],
|
| 139 |
+
# ["./cs.mp3", None],
|
| 140 |
+
# ["./pl.mp3", None],
|
| 141 |
+
# ]
|
| 142 |
+
# import gradio as gr
|
| 143 |
+
|
| 144 |
+
# demo = gr.Blocks()
|
| 145 |
+
# file_transcribe = gr.Interface(
|
| 146 |
+
# fn=speech_to_speech_translation,
|
| 147 |
+
# inputs=gr.Audio(source="upload", type="filepath"),
|
| 148 |
+
# outputs=[
|
| 149 |
+
# gr.Audio(label="Generated Speech", type="numpy"),
|
| 150 |
+
# gr.Text(label="Transcription"),
|
| 151 |
+
# # gr.Label(label="Language prediction"),
|
| 152 |
+
# ],
|
| 153 |
+
# title=title,
|
| 154 |
+
# description=description,
|
| 155 |
+
# examples=examples,
|
| 156 |
+
# )
|
| 157 |
+
# mic_transcribe = gr.Interface(
|
| 158 |
+
# fn=speech_to_speech_translation,
|
| 159 |
+
# inputs=gr.Audio(source="microphone", type="filepath"),
|
| 160 |
+
# outputs=[
|
| 161 |
+
# gr.Audio(label="Generated Speech", type="numpy"),
|
| 162 |
+
# gr.Text(label="Transcription"),
|
| 163 |
+
# # gr.Label(label="Language prediction"),
|
| 164 |
+
# ],
|
| 165 |
+
# title=title,
|
| 166 |
+
# description=description,
|
| 167 |
+
# )
|
| 168 |
+
# with demo:
|
| 169 |
+
# gr.TabbedInterface(
|
| 170 |
+
# [file_transcribe, mic_transcribe],
|
| 171 |
+
# ["Transcribe Audio File", "Transcribe Microphone"],
|
| 172 |
+
# )
|
| 173 |
+
|
| 174 |
+
# demo.launch()
|