Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
from transformers import BarkModel
|
| 5 |
from transformers import AutoProcessor
|
|
@@ -9,26 +10,29 @@ device="cpu"
|
|
| 9 |
pipe = pipeline(
|
| 10 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 11 |
)
|
|
|
|
| 12 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
| 13 |
model = BarkModel.from_pretrained("suno/bark")
|
| 14 |
model = model.to(device)
|
| 15 |
synthesised_rate = model.generation_config.sample_rate
|
| 16 |
|
| 17 |
-
def translate(
|
|
|
|
| 18 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 21 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 22 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 23 |
return speech_output
|
| 24 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 25 |
-
translated_text = translate(audio)
|
| 26 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
| 27 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 28 |
-
return synthesised_rate , synthesised_speech
|
| 29 |
-
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
|
| 30 |
-
synthesised_rate,synthesised_speech,translated_text = speech_to_speech_translation(audio,voice_preset)
|
| 31 |
-
return (synthesised_rate,synthesised_speech.T),translated_text
|
| 32 |
|
| 33 |
title = "Multilanguage to Chinese(mandarin) Cascaded STST"
|
| 34 |
description = """
|
|
@@ -51,22 +55,24 @@ import gradio as gr
|
|
| 51 |
|
| 52 |
demo = gr.Blocks()
|
| 53 |
file_transcribe = gr.Interface(
|
| 54 |
-
fn=
|
| 55 |
inputs=gr.Audio(source="upload", type="filepath"),
|
| 56 |
outputs=[
|
| 57 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 58 |
gr.Text(label="Transcription"),
|
|
|
|
| 59 |
],
|
| 60 |
title=title,
|
| 61 |
description=description,
|
| 62 |
examples=examples,
|
| 63 |
)
|
| 64 |
mic_transcribe = gr.Interface(
|
| 65 |
-
fn=
|
| 66 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 67 |
outputs=[
|
| 68 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 69 |
gr.Text(label="Transcription"),
|
|
|
|
| 70 |
],
|
| 71 |
title=title,
|
| 72 |
description=description,
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
+
import soundfile as sf
|
| 4 |
from transformers import pipeline
|
| 5 |
from transformers import BarkModel
|
| 6 |
from transformers import AutoProcessor
|
|
|
|
| 10 |
pipe = pipeline(
|
| 11 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
| 12 |
)
|
| 13 |
+
label = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
| 14 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
| 15 |
model = BarkModel.from_pretrained("suno/bark")
|
| 16 |
model = model.to(device)
|
| 17 |
synthesised_rate = model.generation_config.sample_rate
|
| 18 |
|
| 19 |
+
def translate(audio_file):
|
| 20 |
+
audio, sampling_rate = sf.read(audio_file)
|
| 21 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
| 22 |
+
language_prediction = label({"array": audio, "sampling_rate": sampling_rate})
|
| 23 |
+
label_outputs = {}
|
| 24 |
+
for pred in language_prediction:
|
| 25 |
+
label_outputs[pred["label"]] = pred["score"]
|
| 26 |
+
return outputs["text"],label_outputs
|
| 27 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
| 28 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
| 29 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
| 30 |
return speech_output
|
| 31 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
| 32 |
+
translated_text, label_outputs= translate(audio)
|
| 33 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
| 34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 35 |
+
return (synthesised_rate , synthesised_speech.T),translated_text,label_outputs
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
title = "Multilanguage to Chinese(mandarin) Cascaded STST"
|
| 38 |
description = """
|
|
|
|
| 55 |
|
| 56 |
demo = gr.Blocks()
|
| 57 |
file_transcribe = gr.Interface(
|
| 58 |
+
fn=speech_to_speech_translation,
|
| 59 |
inputs=gr.Audio(source="upload", type="filepath"),
|
| 60 |
outputs=[
|
| 61 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 62 |
gr.Text(label="Transcription"),
|
| 63 |
+
gr.Label(label="Language prediction"),
|
| 64 |
],
|
| 65 |
title=title,
|
| 66 |
description=description,
|
| 67 |
examples=examples,
|
| 68 |
)
|
| 69 |
mic_transcribe = gr.Interface(
|
| 70 |
+
fn=speech_to_speech_translation,
|
| 71 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 72 |
outputs=[
|
| 73 |
gr.Audio(label="Generated Speech", type="numpy"),
|
| 74 |
gr.Text(label="Transcription"),
|
| 75 |
+
gr.Label(label="Language prediction"),
|
| 76 |
],
|
| 77 |
title=title,
|
| 78 |
description=description,
|