Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/swin
/swin-tiny-patch4-window7_upernet_1xb8-20k_levir-256x256.py
| _base_ = [ | |
| '../_base_/models/upernet_swin.py', '../_base_/datasets/levir_256x256.py', | |
| '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' | |
| ] | |
| crop_size = (256, 256) | |
| norm_cfg = dict(type='BN', requires_grad=True) | |
| data_preprocessor = dict( | |
| size=crop_size, | |
| type='SegDataPreProcessor', | |
| mean=[123.675, 116.28, 103.53, 123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375, 58.395, 57.12, 57.375]) | |
| model = dict( | |
| data_preprocessor=data_preprocessor, | |
| backbone=dict( | |
| in_channels=6, | |
| embed_dims=96, | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_size=7, | |
| use_abs_pos_embed=False, | |
| drop_path_rate=0.3, | |
| patch_norm=True), | |
| decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=2), | |
| auxiliary_head=dict(in_channels=384, num_classes=2)) | |
| # AdamW optimizer, no weight decay for position embedding & layer norm | |
| # in backbone | |
| optim_wrapper = dict( | |
| _delete_=True, | |
| type='OptimWrapper', | |
| optimizer=dict( | |
| type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01), | |
| paramwise_cfg=dict( | |
| custom_keys={ | |
| 'absolute_pos_embed': dict(decay_mult=0.), | |
| 'relative_position_bias_table': dict(decay_mult=0.), | |
| 'norm': dict(decay_mult=0.) | |
| })) | |
| param_scheduler = [ | |
| dict( | |
| type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
| dict( | |
| type='PolyLR', | |
| eta_min=0.0, | |
| power=1.0, | |
| begin=1500, | |
| end=20000, | |
| by_epoch=False, | |
| ) | |
| ] | |
| train_dataloader = dict(batch_size=4) | |
| val_dataloader = dict(batch_size=1) | |
| test_dataloader = val_dataloader | |