Spaces:
Runtime error
Runtime error
| _base_ = [ | |
| '../_base_/models/san_vit-b16.py', | |
| '../_base_/datasets/pascal_context_59.py', '../_base_/default_runtime.py', | |
| '../_base_/schedules/schedule_160k.py' | |
| ] | |
| crop_size = (640, 640) | |
| test_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='ResizeShortestEdge', scale=crop_size, max_size=2560), | |
| dict(type='LoadAnnotations'), | |
| dict(type='PackSegInputs') | |
| ] | |
| # By default, models are trained on 8 GPUs with 2 images per GPU | |
| train_dataloader = dict(batch_size=2) | |
| val_dataloader = dict(batch_size=1, dataset=dict(pipeline=test_pipeline)) | |
| test_dataloader = val_dataloader | |
| data_preprocessor = dict( | |
| mean=[122.7709, 116.7460, 104.0937], | |
| std=[68.5005, 66.6322, 70.3232], | |
| size_divisor=640, | |
| test_cfg=dict(size_divisor=32)) | |
| model = dict( | |
| data_preprocessor=data_preprocessor, | |
| pretrained='pretrain/vit_base_patch16_224.pth', | |
| text_encoder=dict(dataset_name='pascal_context'), | |
| decode_head=dict(num_classes=59)) | |
| # AdamW optimizer, no weight decay for position embedding & layer norm | |
| # in backbone | |
| optim_wrapper = dict( | |
| _delete_=True, | |
| type='OptimWrapper', | |
| optimizer=dict( | |
| type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01), | |
| paramwise_cfg=dict( | |
| custom_keys={ | |
| 'pos_embed': dict(decay_mult=0.), | |
| 'cls_token': dict(decay_mult=0.), | |
| 'norm': dict(decay_mult=0.) | |
| })) | |
| param_scheduler = [ | |
| dict( | |
| type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
| dict( | |
| type='PolyLR', | |
| eta_min=0.0, | |
| power=1.0, | |
| begin=1500, | |
| end=160000, | |
| by_epoch=False, | |
| ) | |
| ] | |