Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/knet
/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py
| _base_ = 'knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py' | |
| checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_tiny_patch4_window7_224_20220308-f41b89d3.pth' # noqa | |
| # model settings | |
| norm_cfg = dict(type='SyncBN', requires_grad=True) | |
| num_stages = 3 | |
| conv_kernel_size = 1 | |
| model = dict( | |
| type='EncoderDecoder', | |
| pretrained=checkpoint_file, | |
| backbone=dict( | |
| _delete_=True, | |
| type='SwinTransformer', | |
| embed_dims=96, | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_size=7, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop_rate=0., | |
| attn_drop_rate=0., | |
| drop_path_rate=0.3, | |
| use_abs_pos_embed=False, | |
| patch_norm=True, | |
| out_indices=(0, 1, 2, 3)), | |
| decode_head=dict( | |
| kernel_generate_head=dict(in_channels=[96, 192, 384, 768])), | |
| auxiliary_head=dict(in_channels=384)) | |
| optim_wrapper = dict( | |
| _delete_=True, | |
| type='OptimWrapper', | |
| # modify learning rate following the official implementation of Swin Transformer # noqa | |
| optimizer=dict( | |
| type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.0005), | |
| paramwise_cfg=dict( | |
| custom_keys={ | |
| 'absolute_pos_embed': dict(decay_mult=0.), | |
| 'relative_position_bias_table': dict(decay_mult=0.), | |
| 'norm': dict(decay_mult=0.) | |
| }), | |
| clip_grad=dict(max_norm=1, norm_type=2)) | |
| # learning policy | |
| param_scheduler = [ | |
| dict( | |
| type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, | |
| end=1000), | |
| dict( | |
| type='MultiStepLR', | |
| begin=1000, | |
| end=80000, | |
| milestones=[60000, 72000], | |
| by_epoch=False, | |
| ) | |
| ] | |
| # In K-Net implementation we use batch size 2 per GPU as default | |
| train_dataloader = dict(batch_size=2, num_workers=2) | |
| val_dataloader = dict(batch_size=1, num_workers=4) | |
| test_dataloader = val_dataloader | |