Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/knet
/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py
| _base_ = 'knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py' | |
| checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_large_patch4_window7_224_22k_20220308-d5bdebaf.pth' # noqa | |
| # model settings | |
| model = dict( | |
| pretrained=checkpoint_file, | |
| backbone=dict( | |
| embed_dims=192, | |
| depths=[2, 2, 18, 2], | |
| num_heads=[6, 12, 24, 48], | |
| window_size=7, | |
| use_abs_pos_embed=False, | |
| drop_path_rate=0.3, | |
| patch_norm=True), | |
| decode_head=dict( | |
| kernel_generate_head=dict(in_channels=[192, 384, 768, 1536])), | |
| auxiliary_head=dict(in_channels=768)) | |
| # In K-Net implementation we use batch size 2 per GPU as default | |
| train_dataloader = dict(batch_size=2, num_workers=2) | |
| val_dataloader = dict(batch_size=1, num_workers=4) | |
| test_dataloader = val_dataloader | |