Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/convnext
/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py
| _base_ = [ | |
| '../_base_/models/upernet_convnext.py', | |
| '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', | |
| '../_base_/schedules/schedule_160k.py' | |
| ] | |
| crop_size = (640, 640) | |
| data_preprocessor = dict(size=crop_size) | |
| checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-xlarge_3rdparty_in21k_20220301-08aa5ddc.pth' # noqa | |
| model = dict( | |
| data_preprocessor=data_preprocessor, | |
| backbone=dict( | |
| type='mmpretrain.ConvNeXt', | |
| arch='xlarge', | |
| out_indices=[0, 1, 2, 3], | |
| drop_path_rate=0.4, | |
| layer_scale_init_value=1.0, | |
| gap_before_final_norm=False, | |
| init_cfg=dict( | |
| type='Pretrained', checkpoint=checkpoint_file, | |
| prefix='backbone.')), | |
| decode_head=dict( | |
| in_channels=[256, 512, 1024, 2048], | |
| num_classes=150, | |
| ), | |
| auxiliary_head=dict(in_channels=1024, num_classes=150), | |
| test_cfg=dict(mode='slide', crop_size=crop_size, stride=(426, 426)), | |
| ) | |
| optim_wrapper = dict( | |
| _delete_=True, | |
| type='AmpOptimWrapper', | |
| optimizer=dict( | |
| type='AdamW', lr=0.00008, betas=(0.9, 0.999), weight_decay=0.05), | |
| paramwise_cfg={ | |
| 'decay_rate': 0.9, | |
| 'decay_type': 'stage_wise', | |
| 'num_layers': 12 | |
| }, | |
| constructor='LearningRateDecayOptimizerConstructor', | |
| loss_scale='dynamic') | |
| param_scheduler = [ | |
| dict( | |
| type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
| dict( | |
| type='PolyLR', | |
| power=1.0, | |
| begin=1500, | |
| end=160000, | |
| eta_min=0.0, | |
| by_epoch=False, | |
| ) | |
| ] | |
| # By default, models are trained on 8 GPUs with 2 images per GPU | |
| train_dataloader = dict(batch_size=2) | |
| val_dataloader = dict(batch_size=1) | |
| test_dataloader = val_dataloader | |