Spaces:
Build error
Build error
up
Browse files- optimization.py +45 -11
optimization.py
CHANGED
|
@@ -11,7 +11,7 @@ import torch
|
|
| 11 |
from torch.utils._pytree import tree_map_only
|
| 12 |
from torchao.quantization import quantize_
|
| 13 |
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 14 |
-
|
| 15 |
from optimization_utils import capture_component_call
|
| 16 |
from optimization_utils import aoti_compile
|
| 17 |
|
|
@@ -19,10 +19,12 @@ from optimization_utils import aoti_compile
|
|
| 19 |
P = ParamSpec('P')
|
| 20 |
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 25 |
-
'hidden_states': {
|
| 26 |
}
|
| 27 |
|
| 28 |
INDUCTOR_CONFIGS = {
|
|
@@ -33,9 +35,18 @@ INDUCTOR_CONFIGS = {
|
|
| 33 |
'max_autotune': True,
|
| 34 |
'triton.cudagraphs': True,
|
| 35 |
}
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
@spaces.GPU(duration=1500)
|
| 41 |
def compile_transformer():
|
|
@@ -49,13 +60,28 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 49 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 50 |
|
| 51 |
hidden_states: torch.Tensor = call.kwargs['hidden_states']
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
else:
|
| 57 |
-
hidden_states_landscape =
|
| 58 |
-
hidden_states_portrait =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
exported_landscape = torch.export.export(
|
| 61 |
mod=pipeline.transformer,
|
|
@@ -81,7 +107,15 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 81 |
|
| 82 |
def combined_transformer(*args, **kwargs):
|
| 83 |
hidden_states: torch.Tensor = kwargs['hidden_states']
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
return compiled_landscape(*args, **kwargs)
|
| 86 |
else:
|
| 87 |
return compiled_portrait(*args, **kwargs)
|
|
|
|
| 11 |
from torch.utils._pytree import tree_map_only
|
| 12 |
from torchao.quantization import quantize_
|
| 13 |
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 14 |
+
from diffusers import LTXConditionPipeline
|
| 15 |
from optimization_utils import capture_component_call
|
| 16 |
from optimization_utils import aoti_compile
|
| 17 |
|
|
|
|
| 19 |
P = ParamSpec('P')
|
| 20 |
|
| 21 |
|
| 22 |
+
# Sequence packing in LTX is a bit of a pain.
|
| 23 |
+
# See: https://github.com/huggingface/diffusers/blob/c052791b5fe29ce8a308bf63dda97aa205b729be/src/diffusers/pipelines/ltx/pipeline_ltx.py#L420
|
| 24 |
+
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('seq_len', min=4680, max=6000)
|
| 25 |
|
| 26 |
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 27 |
+
'hidden_states': {1: TRANSFORMER_NUM_FRAMES_DIM},
|
| 28 |
}
|
| 29 |
|
| 30 |
INDUCTOR_CONFIGS = {
|
|
|
|
| 35 |
'max_autotune': True,
|
| 36 |
'triton.cudagraphs': True,
|
| 37 |
}
|
| 38 |
+
TRANSFORMER_SPATIAL_PATCH_SIZE = 1
|
| 39 |
+
TRANSFORMER_TEMPORAL_PATCH_SIZE = 1
|
| 40 |
+
VAE_SPATIAL_COMPRESSION_RATIO = 32
|
| 41 |
+
VAE_TEMPORAL_COMPRESSION_RATIO = 8
|
| 42 |
|
| 43 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 44 |
+
num_frames = kwargs.get("num_frames")
|
| 45 |
+
height = kwargs.get("height")
|
| 46 |
+
width = kwargs.get("width")
|
| 47 |
+
latent_num_frames = (num_frames - 1) // VAE_TEMPORAL_COMPRESSION_RATIO + 1
|
| 48 |
+
latent_height = height // VAE_SPATIAL_COMPRESSION_RATIO
|
| 49 |
+
latent_width = width //VAE_SPATIAL_COMPRESSION_RATIO
|
| 50 |
|
| 51 |
@spaces.GPU(duration=1500)
|
| 52 |
def compile_transformer():
|
|
|
|
| 60 |
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 61 |
|
| 62 |
hidden_states: torch.Tensor = call.kwargs['hidden_states']
|
| 63 |
+
unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
|
| 64 |
+
hidden_states,
|
| 65 |
+
latent_num_frames,
|
| 66 |
+
latent_height,
|
| 67 |
+
latent_width,
|
| 68 |
+
TRANSFORMER_SPATIAL_PATCH_SIZE,
|
| 69 |
+
TRANSFORMER_TEMPORAL_PATCH_SIZE,
|
| 70 |
+
)
|
| 71 |
+
unpacked_hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
|
| 72 |
+
if unpacked_hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 73 |
+
hidden_states_landscape = unpacked_hidden_states
|
| 74 |
+
hidden_states_portrait = unpacked_hidden_states_transposed
|
| 75 |
else:
|
| 76 |
+
hidden_states_landscape = unpacked_hidden_states_transposed
|
| 77 |
+
hidden_states_portrait = unpacked_hidden_states
|
| 78 |
+
|
| 79 |
+
hidden_states_landscape = LTXConditionPipeline._pack_latents(
|
| 80 |
+
hidden_states_landscape, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE
|
| 81 |
+
)
|
| 82 |
+
hidden_states_portrait = LTXConditionPipeline._pack_latents(
|
| 83 |
+
hidden_states_portrait, TRANSFORMER_SPATIAL_PATCH_SIZE, TRANSFORMER_TEMPORAL_PATCH_SIZE
|
| 84 |
+
)
|
| 85 |
|
| 86 |
exported_landscape = torch.export.export(
|
| 87 |
mod=pipeline.transformer,
|
|
|
|
| 107 |
|
| 108 |
def combined_transformer(*args, **kwargs):
|
| 109 |
hidden_states: torch.Tensor = kwargs['hidden_states']
|
| 110 |
+
unpacked_hidden_states = LTXConditionPipeline._unpack_latents(
|
| 111 |
+
hidden_states,
|
| 112 |
+
latent_num_frames,
|
| 113 |
+
latent_height,
|
| 114 |
+
latent_width,
|
| 115 |
+
TRANSFORMER_SPATIAL_PATCH_SIZE,
|
| 116 |
+
TRANSFORMER_TEMPORAL_PATCH_SIZE,
|
| 117 |
+
)
|
| 118 |
+
if unpacked_hidden_states.shape[-1] > unpacked_hidden_states.shape[-2]:
|
| 119 |
return compiled_landscape(*args, **kwargs)
|
| 120 |
else:
|
| 121 |
return compiled_portrait(*args, **kwargs)
|