Spaces:
Running
on
Zero
Running
on
Zero
Add files
Browse files- .gitmodules +3 -0
- .pre-commit-config.yaml +46 -0
- .style.yapf +5 -0
- CogVideo +1 -0
- app.py +93 -0
- icetk_models/.gitkeep +0 -0
- model.py +1180 -0
- patch +51 -0
- pretrained/.gitkeep +0 -0
- requirements.txt +10 -0
- style.css +7 -0
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "CogVideo"]
|
| 2 |
+
path = CogVideo
|
| 3 |
+
url = https://github.com/THUDM/CogVideo
|
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
exclude: ^patch
|
| 2 |
+
repos:
|
| 3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 4 |
+
rev: v4.2.0
|
| 5 |
+
hooks:
|
| 6 |
+
- id: check-executables-have-shebangs
|
| 7 |
+
- id: check-json
|
| 8 |
+
- id: check-merge-conflict
|
| 9 |
+
- id: check-shebang-scripts-are-executable
|
| 10 |
+
- id: check-toml
|
| 11 |
+
- id: check-yaml
|
| 12 |
+
- id: double-quote-string-fixer
|
| 13 |
+
- id: end-of-file-fixer
|
| 14 |
+
- id: mixed-line-ending
|
| 15 |
+
args: ['--fix=lf']
|
| 16 |
+
- id: requirements-txt-fixer
|
| 17 |
+
- id: trailing-whitespace
|
| 18 |
+
- repo: https://github.com/myint/docformatter
|
| 19 |
+
rev: v1.4
|
| 20 |
+
hooks:
|
| 21 |
+
- id: docformatter
|
| 22 |
+
args: ['--in-place']
|
| 23 |
+
- repo: https://github.com/pycqa/isort
|
| 24 |
+
rev: 5.10.1
|
| 25 |
+
hooks:
|
| 26 |
+
- id: isort
|
| 27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 28 |
+
rev: v0.812
|
| 29 |
+
hooks:
|
| 30 |
+
- id: mypy
|
| 31 |
+
args: ['--ignore-missing-imports']
|
| 32 |
+
- repo: https://github.com/google/yapf
|
| 33 |
+
rev: v0.32.0
|
| 34 |
+
hooks:
|
| 35 |
+
- id: yapf
|
| 36 |
+
args: ['--parallel', '--in-place']
|
| 37 |
+
- repo: https://github.com/kynan/nbstripout
|
| 38 |
+
rev: 0.5.0
|
| 39 |
+
hooks:
|
| 40 |
+
- id: nbstripout
|
| 41 |
+
args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
|
| 42 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
| 43 |
+
rev: 1.3.1
|
| 44 |
+
hooks:
|
| 45 |
+
- id: nbqa-isort
|
| 46 |
+
- id: nbqa-yapf
|
.style.yapf
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[style]
|
| 2 |
+
based_on_style = pep8
|
| 3 |
+
blank_line_before_nested_class_or_def = false
|
| 4 |
+
spaces_before_comment = 2
|
| 5 |
+
split_before_logical_operator = true
|
CogVideo
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit ff423aa169978fb2f636f761e348631fa3178b03
|
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
from model import AppModel
|
| 10 |
+
|
| 11 |
+
DESCRIPTION = '''# <a href="https://github.com/THUDM/CogVideo">CogVideo</a>
|
| 12 |
+
|
| 13 |
+
The model takes only Chinese as input.
|
| 14 |
+
If you check the "Translate to Chinese" checkbox, the app will use the English to Chinese translation results with [this Space](https://huggingface.co/spaces/chinhon/translation_eng2ch) as input.
|
| 15 |
+
But the translation model may mistranslate and the results could be poor.
|
| 16 |
+
So, it is also a good idea to input the translation results from other translation services.
|
| 17 |
+
'''
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def parse_args() -> argparse.Namespace:
|
| 21 |
+
parser = argparse.ArgumentParser()
|
| 22 |
+
parser.add_argument('--only-first-stage', action='store_true')
|
| 23 |
+
parser.add_argument('--share', action='store_true')
|
| 24 |
+
return parser.parse_args()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def set_example_text(example: list) -> dict:
|
| 28 |
+
return gr.Textbox.update(value=example[0])
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def main():
|
| 32 |
+
args = parse_args()
|
| 33 |
+
model = AppModel(args.only_first_stage)
|
| 34 |
+
|
| 35 |
+
with gr.Blocks(css='style.css') as demo:
|
| 36 |
+
gr.Markdown(DESCRIPTION)
|
| 37 |
+
|
| 38 |
+
with gr.Row():
|
| 39 |
+
with gr.Column():
|
| 40 |
+
with gr.Group():
|
| 41 |
+
text = gr.Textbox(label='Input Text')
|
| 42 |
+
translate = gr.Checkbox(label='Translate to Chinese',
|
| 43 |
+
value=False)
|
| 44 |
+
seed = gr.Slider(0,
|
| 45 |
+
100000,
|
| 46 |
+
step=1,
|
| 47 |
+
value=1234,
|
| 48 |
+
label='Seed')
|
| 49 |
+
only_first_stage = gr.Checkbox(
|
| 50 |
+
label='Only First Stage',
|
| 51 |
+
value=args.only_first_stage,
|
| 52 |
+
visible=not args.only_first_stage)
|
| 53 |
+
run_button = gr.Button('Run')
|
| 54 |
+
|
| 55 |
+
with open('samples.txt') as f:
|
| 56 |
+
samples = [
|
| 57 |
+
line.strip().split('\t') for line in f.readlines()
|
| 58 |
+
]
|
| 59 |
+
examples = gr.Dataset(components=[text], samples=samples)
|
| 60 |
+
|
| 61 |
+
with gr.Column():
|
| 62 |
+
with gr.Group():
|
| 63 |
+
translated_text = gr.Textbox(label='Translated Text')
|
| 64 |
+
with gr.Tabs():
|
| 65 |
+
with gr.TabItem('Output (Video)'):
|
| 66 |
+
result_video = gr.Video(show_label=False)
|
| 67 |
+
with gr.TabItem('Output (Gallery)'):
|
| 68 |
+
result_gallery = gr.Gallery(show_label=False)
|
| 69 |
+
|
| 70 |
+
run_button.click(fn=model.run_with_translation,
|
| 71 |
+
inputs=[
|
| 72 |
+
text,
|
| 73 |
+
translate,
|
| 74 |
+
seed,
|
| 75 |
+
only_first_stage,
|
| 76 |
+
],
|
| 77 |
+
outputs=[
|
| 78 |
+
translated_text,
|
| 79 |
+
result_video,
|
| 80 |
+
result_gallery,
|
| 81 |
+
])
|
| 82 |
+
examples.click(fn=set_example_text,
|
| 83 |
+
inputs=examples,
|
| 84 |
+
outputs=examples.components)
|
| 85 |
+
|
| 86 |
+
demo.launch(
|
| 87 |
+
enable_queue=True,
|
| 88 |
+
share=args.share,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
if __name__ == '__main__':
|
| 93 |
+
main()
|
icetk_models/.gitkeep
ADDED
|
File without changes
|
model.py
ADDED
|
@@ -0,0 +1,1180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This code is adapted from https://github.com/THUDM/CogView2/blob/4e55cce981eb94b9c8c1f19ba9f632fd3ee42ba8/cogview2_text2image.py
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import logging
|
| 8 |
+
import pathlib
|
| 9 |
+
import sys
|
| 10 |
+
import tempfile
|
| 11 |
+
import time
|
| 12 |
+
from typing import Any
|
| 13 |
+
|
| 14 |
+
import gradio as gr
|
| 15 |
+
import imageio.v2 as iio
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
from icetk import IceTokenizer
|
| 19 |
+
from SwissArmyTransformer import get_args
|
| 20 |
+
from SwissArmyTransformer.arguments import set_random_seed
|
| 21 |
+
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
|
| 22 |
+
from SwissArmyTransformer.resources import auto_create
|
| 23 |
+
|
| 24 |
+
app_dir = pathlib.Path(__file__).parent
|
| 25 |
+
submodule_dir = app_dir / 'CogVideo'
|
| 26 |
+
sys.path.insert(0, submodule_dir.as_posix())
|
| 27 |
+
|
| 28 |
+
from coglm_strategy import CoglmStrategy
|
| 29 |
+
from models.cogvideo_cache_model import CogVideoCacheModel
|
| 30 |
+
from sr_pipeline import DirectSuperResolution
|
| 31 |
+
|
| 32 |
+
formatter = logging.Formatter(
|
| 33 |
+
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
|
| 34 |
+
datefmt='%Y-%m-%d %H:%M:%S')
|
| 35 |
+
stream_handler = logging.StreamHandler(stream=sys.stdout)
|
| 36 |
+
stream_handler.setLevel(logging.INFO)
|
| 37 |
+
stream_handler.setFormatter(formatter)
|
| 38 |
+
logger = logging.getLogger(__name__)
|
| 39 |
+
logger.setLevel(logging.INFO)
|
| 40 |
+
logger.propagate = False
|
| 41 |
+
logger.addHandler(stream_handler)
|
| 42 |
+
|
| 43 |
+
ICETK_MODEL_DIR = app_dir / 'icetk_models'
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_masks_and_position_ids_stage1(data, textlen, framelen):
|
| 47 |
+
# Extract batch size and sequence length.
|
| 48 |
+
tokens = data
|
| 49 |
+
seq_length = len(data[0])
|
| 50 |
+
# Attention mask (lower triangular).
|
| 51 |
+
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen),
|
| 52 |
+
device=data.device)
|
| 53 |
+
attention_mask[:, :textlen, textlen:] = 0
|
| 54 |
+
attention_mask[:, textlen:, textlen:].tril_()
|
| 55 |
+
attention_mask.unsqueeze_(1)
|
| 56 |
+
# Unaligned version
|
| 57 |
+
position_ids = torch.zeros(seq_length,
|
| 58 |
+
dtype=torch.long,
|
| 59 |
+
device=data.device)
|
| 60 |
+
torch.arange(textlen,
|
| 61 |
+
out=position_ids[:textlen],
|
| 62 |
+
dtype=torch.long,
|
| 63 |
+
device=data.device)
|
| 64 |
+
torch.arange(512,
|
| 65 |
+
512 + seq_length - textlen,
|
| 66 |
+
out=position_ids[textlen:],
|
| 67 |
+
dtype=torch.long,
|
| 68 |
+
device=data.device)
|
| 69 |
+
position_ids = position_ids.unsqueeze(0)
|
| 70 |
+
|
| 71 |
+
return tokens, attention_mask, position_ids
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_masks_and_position_ids_stage2(data, textlen, framelen):
|
| 75 |
+
# Extract batch size and sequence length.
|
| 76 |
+
tokens = data
|
| 77 |
+
seq_length = len(data[0])
|
| 78 |
+
|
| 79 |
+
# Attention mask (lower triangular).
|
| 80 |
+
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen),
|
| 81 |
+
device=data.device)
|
| 82 |
+
attention_mask[:, :textlen, textlen:] = 0
|
| 83 |
+
attention_mask[:, textlen:, textlen:].tril_()
|
| 84 |
+
attention_mask.unsqueeze_(1)
|
| 85 |
+
|
| 86 |
+
# Unaligned version
|
| 87 |
+
position_ids = torch.zeros(seq_length,
|
| 88 |
+
dtype=torch.long,
|
| 89 |
+
device=data.device)
|
| 90 |
+
torch.arange(textlen,
|
| 91 |
+
out=position_ids[:textlen],
|
| 92 |
+
dtype=torch.long,
|
| 93 |
+
device=data.device)
|
| 94 |
+
frame_num = (seq_length - textlen) // framelen
|
| 95 |
+
assert frame_num == 5
|
| 96 |
+
torch.arange(512,
|
| 97 |
+
512 + framelen,
|
| 98 |
+
out=position_ids[textlen:textlen + framelen],
|
| 99 |
+
dtype=torch.long,
|
| 100 |
+
device=data.device)
|
| 101 |
+
torch.arange(512 + framelen * 2,
|
| 102 |
+
512 + framelen * 3,
|
| 103 |
+
out=position_ids[textlen + framelen:textlen + framelen * 2],
|
| 104 |
+
dtype=torch.long,
|
| 105 |
+
device=data.device)
|
| 106 |
+
torch.arange(512 + framelen * (frame_num - 1),
|
| 107 |
+
512 + framelen * frame_num,
|
| 108 |
+
out=position_ids[textlen + framelen * 2:textlen +
|
| 109 |
+
framelen * 3],
|
| 110 |
+
dtype=torch.long,
|
| 111 |
+
device=data.device)
|
| 112 |
+
torch.arange(512 + framelen * 1,
|
| 113 |
+
512 + framelen * 2,
|
| 114 |
+
out=position_ids[textlen + framelen * 3:textlen +
|
| 115 |
+
framelen * 4],
|
| 116 |
+
dtype=torch.long,
|
| 117 |
+
device=data.device)
|
| 118 |
+
torch.arange(512 + framelen * 3,
|
| 119 |
+
512 + framelen * 4,
|
| 120 |
+
out=position_ids[textlen + framelen * 4:textlen +
|
| 121 |
+
framelen * 5],
|
| 122 |
+
dtype=torch.long,
|
| 123 |
+
device=data.device)
|
| 124 |
+
|
| 125 |
+
position_ids = position_ids.unsqueeze(0)
|
| 126 |
+
|
| 127 |
+
return tokens, attention_mask, position_ids
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def my_update_mems(hiddens, mems_buffers, mems_indexs,
|
| 131 |
+
limited_spatial_channel_mem, text_len, frame_len):
|
| 132 |
+
if hiddens is None:
|
| 133 |
+
return None, mems_indexs
|
| 134 |
+
mem_num = len(hiddens)
|
| 135 |
+
ret_mem = []
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
for id in range(mem_num):
|
| 138 |
+
if hiddens[id][0] is None:
|
| 139 |
+
ret_mem.append(None)
|
| 140 |
+
else:
|
| 141 |
+
if id == 0 and limited_spatial_channel_mem and mems_indexs[
|
| 142 |
+
id] + hiddens[0][0].shape[1] >= text_len + frame_len:
|
| 143 |
+
if mems_indexs[id] == 0:
|
| 144 |
+
for layer, hidden in enumerate(hiddens[id]):
|
| 145 |
+
mems_buffers[id][
|
| 146 |
+
layer, :, :text_len] = hidden.expand(
|
| 147 |
+
mems_buffers[id].shape[1], -1,
|
| 148 |
+
-1)[:, :text_len]
|
| 149 |
+
new_mem_len_part2 = (mems_indexs[id] +
|
| 150 |
+
hiddens[0][0].shape[1] -
|
| 151 |
+
text_len) % frame_len
|
| 152 |
+
if new_mem_len_part2 > 0:
|
| 153 |
+
for layer, hidden in enumerate(hiddens[id]):
|
| 154 |
+
mems_buffers[id][
|
| 155 |
+
layer, :, text_len:text_len +
|
| 156 |
+
new_mem_len_part2] = hidden.expand(
|
| 157 |
+
mems_buffers[id].shape[1], -1,
|
| 158 |
+
-1)[:, -new_mem_len_part2:]
|
| 159 |
+
mems_indexs[id] = text_len + new_mem_len_part2
|
| 160 |
+
else:
|
| 161 |
+
for layer, hidden in enumerate(hiddens[id]):
|
| 162 |
+
mems_buffers[id][layer, :,
|
| 163 |
+
mems_indexs[id]:mems_indexs[id] +
|
| 164 |
+
hidden.shape[1]] = hidden.expand(
|
| 165 |
+
mems_buffers[id].shape[1], -1, -1)
|
| 166 |
+
mems_indexs[id] += hidden.shape[1]
|
| 167 |
+
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
|
| 168 |
+
return ret_mem, mems_indexs
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
|
| 172 |
+
# The fisrt token's position id of the frame that the next token belongs to;
|
| 173 |
+
if total_len < text_len:
|
| 174 |
+
return None
|
| 175 |
+
return (total_len - text_len) // frame_len * frame_len + text_len
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def my_filling_sequence(
|
| 179 |
+
model,
|
| 180 |
+
tokenizer,
|
| 181 |
+
args,
|
| 182 |
+
seq,
|
| 183 |
+
batch_size,
|
| 184 |
+
get_masks_and_position_ids,
|
| 185 |
+
text_len,
|
| 186 |
+
frame_len,
|
| 187 |
+
strategy=BaseStrategy(),
|
| 188 |
+
strategy2=BaseStrategy(),
|
| 189 |
+
mems=None,
|
| 190 |
+
log_text_attention_weights=0, # default to 0: no artificial change
|
| 191 |
+
mode_stage1=True,
|
| 192 |
+
enforce_no_swin=False,
|
| 193 |
+
guider_seq=None,
|
| 194 |
+
guider_text_len=0,
|
| 195 |
+
guidance_alpha=1,
|
| 196 |
+
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
|
| 197 |
+
**kw_args):
|
| 198 |
+
'''
|
| 199 |
+
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
|
| 200 |
+
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
|
| 201 |
+
cache, should be first mems.shape[1] parts of context_tokens.
|
| 202 |
+
mems are the first-level citizens here, but we don't assume what is memorized.
|
| 203 |
+
input mems are used when multi-phase generation.
|
| 204 |
+
'''
|
| 205 |
+
if guider_seq is not None:
|
| 206 |
+
logger.debug('Using Guidance In Inference')
|
| 207 |
+
if limited_spatial_channel_mem:
|
| 208 |
+
logger.debug("Limit spatial-channel's mem to current frame")
|
| 209 |
+
assert len(seq.shape) == 2
|
| 210 |
+
|
| 211 |
+
# building the initial tokens, attention_mask, and position_ids
|
| 212 |
+
actual_context_length = 0
|
| 213 |
+
|
| 214 |
+
while seq[-1][
|
| 215 |
+
actual_context_length] >= 0: # the last seq has least given tokens
|
| 216 |
+
actual_context_length += 1 # [0, context_length-1] are given
|
| 217 |
+
assert actual_context_length > 0
|
| 218 |
+
current_frame_num = (actual_context_length - text_len) // frame_len
|
| 219 |
+
assert current_frame_num >= 0
|
| 220 |
+
context_length = text_len + current_frame_num * frame_len
|
| 221 |
+
|
| 222 |
+
tokens, attention_mask, position_ids = get_masks_and_position_ids(
|
| 223 |
+
seq, text_len, frame_len)
|
| 224 |
+
tokens = tokens[..., :context_length]
|
| 225 |
+
input_tokens = tokens.clone()
|
| 226 |
+
|
| 227 |
+
if guider_seq is not None:
|
| 228 |
+
guider_index_delta = text_len - guider_text_len
|
| 229 |
+
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(
|
| 230 |
+
guider_seq, guider_text_len, frame_len)
|
| 231 |
+
guider_tokens = guider_tokens[..., :context_length -
|
| 232 |
+
guider_index_delta]
|
| 233 |
+
guider_input_tokens = guider_tokens.clone()
|
| 234 |
+
|
| 235 |
+
for fid in range(current_frame_num):
|
| 236 |
+
input_tokens[:, text_len + 400 * fid] = tokenizer['<start_of_image>']
|
| 237 |
+
if guider_seq is not None:
|
| 238 |
+
guider_input_tokens[:, guider_text_len +
|
| 239 |
+
400 * fid] = tokenizer['<start_of_image>']
|
| 240 |
+
|
| 241 |
+
attention_mask = attention_mask.type_as(next(
|
| 242 |
+
model.parameters())) # if fp16
|
| 243 |
+
# initialize generation
|
| 244 |
+
counter = context_length - 1 # Last fixed index is ``counter''
|
| 245 |
+
index = 0 # Next forward starting index, also the length of cache.
|
| 246 |
+
mems_buffers_on_GPU = False
|
| 247 |
+
mems_indexs = [0, 0]
|
| 248 |
+
mems_len = [(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74,
|
| 249 |
+
5 * 400 + 74]
|
| 250 |
+
mems_buffers = [
|
| 251 |
+
torch.zeros(args.num_layers,
|
| 252 |
+
batch_size,
|
| 253 |
+
mem_len,
|
| 254 |
+
args.hidden_size * 2,
|
| 255 |
+
dtype=next(model.parameters()).dtype)
|
| 256 |
+
for mem_len in mems_len
|
| 257 |
+
]
|
| 258 |
+
|
| 259 |
+
if guider_seq is not None:
|
| 260 |
+
guider_attention_mask = guider_attention_mask.type_as(
|
| 261 |
+
next(model.parameters())) # if fp16
|
| 262 |
+
guider_mems_buffers = [
|
| 263 |
+
torch.zeros(args.num_layers,
|
| 264 |
+
batch_size,
|
| 265 |
+
mem_len,
|
| 266 |
+
args.hidden_size * 2,
|
| 267 |
+
dtype=next(model.parameters()).dtype)
|
| 268 |
+
for mem_len in mems_len
|
| 269 |
+
]
|
| 270 |
+
guider_mems_indexs = [0, 0]
|
| 271 |
+
guider_mems = None
|
| 272 |
+
|
| 273 |
+
torch.cuda.empty_cache()
|
| 274 |
+
# step-by-step generation
|
| 275 |
+
while counter < len(seq[0]) - 1:
|
| 276 |
+
# we have generated counter+1 tokens
|
| 277 |
+
# Now, we want to generate seq[counter + 1],
|
| 278 |
+
# token[:, index: counter+1] needs forwarding.
|
| 279 |
+
if index == 0:
|
| 280 |
+
group_size = 2 if (input_tokens.shape[0] == batch_size
|
| 281 |
+
and not mode_stage1) else batch_size
|
| 282 |
+
|
| 283 |
+
logits_all = None
|
| 284 |
+
for batch_idx in range(0, input_tokens.shape[0], group_size):
|
| 285 |
+
logits, *output_per_layers = model(
|
| 286 |
+
input_tokens[batch_idx:batch_idx + group_size, index:],
|
| 287 |
+
position_ids[..., index:counter + 1],
|
| 288 |
+
attention_mask, # TODO memlen
|
| 289 |
+
mems=mems,
|
| 290 |
+
text_len=text_len,
|
| 291 |
+
frame_len=frame_len,
|
| 292 |
+
counter=counter,
|
| 293 |
+
log_text_attention_weights=log_text_attention_weights,
|
| 294 |
+
enforce_no_swin=enforce_no_swin,
|
| 295 |
+
**kw_args)
|
| 296 |
+
logits_all = torch.cat(
|
| 297 |
+
(logits_all,
|
| 298 |
+
logits), dim=0) if logits_all is not None else logits
|
| 299 |
+
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers],
|
| 300 |
+
[o['mem_kv'][1] for o in output_per_layers]]
|
| 301 |
+
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(
|
| 302 |
+
text_len, frame_len, mem_kv01[0][0].shape[1])
|
| 303 |
+
for id, mem_kv in enumerate(mem_kv01):
|
| 304 |
+
for layer, mem_kv_perlayer in enumerate(mem_kv):
|
| 305 |
+
if limited_spatial_channel_mem and id == 0:
|
| 306 |
+
mems_buffers[id][
|
| 307 |
+
layer, batch_idx:batch_idx + group_size, :
|
| 308 |
+
text_len] = mem_kv_perlayer.expand(
|
| 309 |
+
min(group_size,
|
| 310 |
+
input_tokens.shape[0] - batch_idx), -1,
|
| 311 |
+
-1)[:, :text_len]
|
| 312 |
+
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
|
| 313 |
+
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
|
| 314 |
+
else:
|
| 315 |
+
mems_buffers[id][
|
| 316 |
+
layer, batch_idx:batch_idx +
|
| 317 |
+
group_size, :mem_kv_perlayer.
|
| 318 |
+
shape[1]] = mem_kv_perlayer.expand(
|
| 319 |
+
min(group_size,
|
| 320 |
+
input_tokens.shape[0] - batch_idx), -1,
|
| 321 |
+
-1)
|
| 322 |
+
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[
|
| 323 |
+
1], mem_kv01[1][0].shape[1]
|
| 324 |
+
if limited_spatial_channel_mem:
|
| 325 |
+
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
|
| 326 |
+
|
| 327 |
+
mems = [
|
| 328 |
+
mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)
|
| 329 |
+
]
|
| 330 |
+
logits = logits_all
|
| 331 |
+
|
| 332 |
+
# Guider
|
| 333 |
+
if guider_seq is not None:
|
| 334 |
+
guider_logits_all = None
|
| 335 |
+
for batch_idx in range(0, guider_input_tokens.shape[0],
|
| 336 |
+
group_size):
|
| 337 |
+
guider_logits, *guider_output_per_layers = model(
|
| 338 |
+
guider_input_tokens[batch_idx:batch_idx + group_size,
|
| 339 |
+
max(index -
|
| 340 |
+
guider_index_delta, 0):],
|
| 341 |
+
guider_position_ids[
|
| 342 |
+
...,
|
| 343 |
+
max(index - guider_index_delta, 0):counter + 1 -
|
| 344 |
+
guider_index_delta],
|
| 345 |
+
guider_attention_mask,
|
| 346 |
+
mems=guider_mems,
|
| 347 |
+
text_len=guider_text_len,
|
| 348 |
+
frame_len=frame_len,
|
| 349 |
+
counter=counter - guider_index_delta,
|
| 350 |
+
log_text_attention_weights=log_text_attention_weights,
|
| 351 |
+
enforce_no_swin=enforce_no_swin,
|
| 352 |
+
**kw_args)
|
| 353 |
+
guider_logits_all = torch.cat(
|
| 354 |
+
(guider_logits_all, guider_logits), dim=0
|
| 355 |
+
) if guider_logits_all is not None else guider_logits
|
| 356 |
+
guider_mem_kv01 = [[
|
| 357 |
+
o['mem_kv'][0] for o in guider_output_per_layers
|
| 358 |
+
], [o['mem_kv'][1] for o in guider_output_per_layers]]
|
| 359 |
+
for id, guider_mem_kv in enumerate(guider_mem_kv01):
|
| 360 |
+
for layer, guider_mem_kv_perlayer in enumerate(
|
| 361 |
+
guider_mem_kv):
|
| 362 |
+
if limited_spatial_channel_mem and id == 0:
|
| 363 |
+
guider_mems_buffers[id][
|
| 364 |
+
layer, batch_idx:batch_idx + group_size, :
|
| 365 |
+
guider_text_len] = guider_mem_kv_perlayer.expand(
|
| 366 |
+
min(group_size,
|
| 367 |
+
input_tokens.shape[0] - batch_idx),
|
| 368 |
+
-1, -1)[:, :guider_text_len]
|
| 369 |
+
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(
|
| 370 |
+
guider_text_len, frame_len,
|
| 371 |
+
guider_mem_kv_perlayer.shape[1])
|
| 372 |
+
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
|
| 373 |
+
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
|
| 374 |
+
else:
|
| 375 |
+
guider_mems_buffers[id][
|
| 376 |
+
layer, batch_idx:batch_idx +
|
| 377 |
+
group_size, :guider_mem_kv_perlayer.
|
| 378 |
+
shape[1]] = guider_mem_kv_perlayer.expand(
|
| 379 |
+
min(group_size,
|
| 380 |
+
input_tokens.shape[0] - batch_idx),
|
| 381 |
+
-1, -1)
|
| 382 |
+
guider_mems_indexs[0], guider_mems_indexs[
|
| 383 |
+
1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[
|
| 384 |
+
1][0].shape[1]
|
| 385 |
+
if limited_spatial_channel_mem:
|
| 386 |
+
guider_mems_indexs[0] -= (
|
| 387 |
+
guider_next_tokens_frame_begin_id -
|
| 388 |
+
guider_text_len)
|
| 389 |
+
guider_mems = [
|
| 390 |
+
guider_mems_buffers[id][:, :, :guider_mems_indexs[id]]
|
| 391 |
+
for id in range(2)
|
| 392 |
+
]
|
| 393 |
+
guider_logits = guider_logits_all
|
| 394 |
+
else:
|
| 395 |
+
if not mems_buffers_on_GPU:
|
| 396 |
+
if not mode_stage1:
|
| 397 |
+
torch.cuda.empty_cache()
|
| 398 |
+
for idx, mem in enumerate(mems):
|
| 399 |
+
mems[idx] = mem.to(next(model.parameters()).device)
|
| 400 |
+
if guider_seq is not None:
|
| 401 |
+
for idx, mem in enumerate(guider_mems):
|
| 402 |
+
guider_mems[idx] = mem.to(
|
| 403 |
+
next(model.parameters()).device)
|
| 404 |
+
else:
|
| 405 |
+
torch.cuda.empty_cache()
|
| 406 |
+
for idx, mem_buffer in enumerate(mems_buffers):
|
| 407 |
+
mems_buffers[idx] = mem_buffer.to(
|
| 408 |
+
next(model.parameters()).device)
|
| 409 |
+
mems = [
|
| 410 |
+
mems_buffers[id][:, :, :mems_indexs[id]]
|
| 411 |
+
for id in range(2)
|
| 412 |
+
]
|
| 413 |
+
if guider_seq is not None:
|
| 414 |
+
for idx, guider_mem_buffer in enumerate(
|
| 415 |
+
guider_mems_buffers):
|
| 416 |
+
guider_mems_buffers[idx] = guider_mem_buffer.to(
|
| 417 |
+
next(model.parameters()).device)
|
| 418 |
+
guider_mems = [
|
| 419 |
+
guider_mems_buffers[id]
|
| 420 |
+
[:, :, :guider_mems_indexs[id]] for id in range(2)
|
| 421 |
+
]
|
| 422 |
+
mems_buffers_on_GPU = True
|
| 423 |
+
|
| 424 |
+
logits, *output_per_layers = model(
|
| 425 |
+
input_tokens[:, index:],
|
| 426 |
+
position_ids[..., index:counter + 1],
|
| 427 |
+
attention_mask, # TODO memlen
|
| 428 |
+
mems=mems,
|
| 429 |
+
text_len=text_len,
|
| 430 |
+
frame_len=frame_len,
|
| 431 |
+
counter=counter,
|
| 432 |
+
log_text_attention_weights=log_text_attention_weights,
|
| 433 |
+
enforce_no_swin=enforce_no_swin,
|
| 434 |
+
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
| 435 |
+
**kw_args)
|
| 436 |
+
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers
|
| 437 |
+
], [o['mem_kv'][1] for o in output_per_layers]
|
| 438 |
+
|
| 439 |
+
if guider_seq is not None:
|
| 440 |
+
guider_logits, *guider_output_per_layers = model(
|
| 441 |
+
guider_input_tokens[:,
|
| 442 |
+
max(index - guider_index_delta, 0):],
|
| 443 |
+
guider_position_ids[...,
|
| 444 |
+
max(index -
|
| 445 |
+
guider_index_delta, 0):counter +
|
| 446 |
+
1 - guider_index_delta],
|
| 447 |
+
guider_attention_mask,
|
| 448 |
+
mems=guider_mems,
|
| 449 |
+
text_len=guider_text_len,
|
| 450 |
+
frame_len=frame_len,
|
| 451 |
+
counter=counter - guider_index_delta,
|
| 452 |
+
log_text_attention_weights=0,
|
| 453 |
+
enforce_no_swin=enforce_no_swin,
|
| 454 |
+
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
| 455 |
+
**kw_args)
|
| 456 |
+
guider_mem_kv0, guider_mem_kv1 = [
|
| 457 |
+
o['mem_kv'][0] for o in guider_output_per_layers
|
| 458 |
+
], [o['mem_kv'][1] for o in guider_output_per_layers]
|
| 459 |
+
|
| 460 |
+
if not mems_buffers_on_GPU:
|
| 461 |
+
torch.cuda.empty_cache()
|
| 462 |
+
for idx, mem_buffer in enumerate(mems_buffers):
|
| 463 |
+
mems_buffers[idx] = mem_buffer.to(
|
| 464 |
+
next(model.parameters()).device)
|
| 465 |
+
if guider_seq is not None:
|
| 466 |
+
for idx, guider_mem_buffer in enumerate(
|
| 467 |
+
guider_mems_buffers):
|
| 468 |
+
guider_mems_buffers[idx] = guider_mem_buffer.to(
|
| 469 |
+
next(model.parameters()).device)
|
| 470 |
+
mems_buffers_on_GPU = True
|
| 471 |
+
|
| 472 |
+
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1],
|
| 473 |
+
mems_buffers, mems_indexs,
|
| 474 |
+
limited_spatial_channel_mem,
|
| 475 |
+
text_len, frame_len)
|
| 476 |
+
if guider_seq is not None:
|
| 477 |
+
guider_mems, guider_mems_indexs = my_update_mems(
|
| 478 |
+
[guider_mem_kv0, guider_mem_kv1], guider_mems_buffers,
|
| 479 |
+
guider_mems_indexs, limited_spatial_channel_mem,
|
| 480 |
+
guider_text_len, frame_len)
|
| 481 |
+
|
| 482 |
+
counter += 1
|
| 483 |
+
index = counter
|
| 484 |
+
|
| 485 |
+
logits = logits[:, -1].expand(batch_size,
|
| 486 |
+
-1) # [batch size, vocab size]
|
| 487 |
+
tokens = tokens.expand(batch_size, -1)
|
| 488 |
+
if guider_seq is not None:
|
| 489 |
+
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
|
| 490 |
+
guider_tokens = guider_tokens.expand(batch_size, -1)
|
| 491 |
+
|
| 492 |
+
if seq[-1][counter].item() < 0:
|
| 493 |
+
# sampling
|
| 494 |
+
guided_logits = guider_logits + (
|
| 495 |
+
logits - guider_logits
|
| 496 |
+
) * guidance_alpha if guider_seq is not None else logits
|
| 497 |
+
if mode_stage1 and counter < text_len + 400:
|
| 498 |
+
tokens, mems = strategy.forward(guided_logits, tokens, mems)
|
| 499 |
+
else:
|
| 500 |
+
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
|
| 501 |
+
if guider_seq is not None:
|
| 502 |
+
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]),
|
| 503 |
+
dim=1)
|
| 504 |
+
|
| 505 |
+
if seq[0][counter].item() >= 0:
|
| 506 |
+
for si in range(seq.shape[0]):
|
| 507 |
+
if seq[si][counter].item() >= 0:
|
| 508 |
+
tokens[si, -1] = seq[si, counter]
|
| 509 |
+
if guider_seq is not None:
|
| 510 |
+
guider_tokens[si,
|
| 511 |
+
-1] = guider_seq[si, counter -
|
| 512 |
+
guider_index_delta]
|
| 513 |
+
|
| 514 |
+
else:
|
| 515 |
+
tokens = torch.cat(
|
| 516 |
+
(tokens, seq[:, counter:counter + 1].clone().expand(
|
| 517 |
+
tokens.shape[0], 1).to(device=tokens.device,
|
| 518 |
+
dtype=tokens.dtype)),
|
| 519 |
+
dim=1)
|
| 520 |
+
if guider_seq is not None:
|
| 521 |
+
guider_tokens = torch.cat(
|
| 522 |
+
(guider_tokens,
|
| 523 |
+
guider_seq[:, counter - guider_index_delta:counter + 1 -
|
| 524 |
+
guider_index_delta].clone().expand(
|
| 525 |
+
guider_tokens.shape[0], 1).to(
|
| 526 |
+
device=guider_tokens.device,
|
| 527 |
+
dtype=guider_tokens.dtype)),
|
| 528 |
+
dim=1)
|
| 529 |
+
|
| 530 |
+
input_tokens = tokens.clone()
|
| 531 |
+
if guider_seq is not None:
|
| 532 |
+
guider_input_tokens = guider_tokens.clone()
|
| 533 |
+
if (index - text_len - 1) // 400 < (input_tokens.shape[-1] - text_len -
|
| 534 |
+
1) // 400:
|
| 535 |
+
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len
|
| 536 |
+
while boi_idx < input_tokens.shape[-1]:
|
| 537 |
+
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
|
| 538 |
+
if guider_seq is not None:
|
| 539 |
+
guider_input_tokens[:, boi_idx -
|
| 540 |
+
guider_index_delta] = tokenizer[
|
| 541 |
+
'<start_of_image>']
|
| 542 |
+
boi_idx += 400
|
| 543 |
+
|
| 544 |
+
if strategy.is_done:
|
| 545 |
+
break
|
| 546 |
+
return strategy.finalize(tokens, mems)
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
class InferenceModel_Sequential(CogVideoCacheModel):
|
| 550 |
+
def __init__(self, args, transformer=None, parallel_output=True):
|
| 551 |
+
super().__init__(args,
|
| 552 |
+
transformer=transformer,
|
| 553 |
+
parallel_output=parallel_output,
|
| 554 |
+
window_size=-1,
|
| 555 |
+
cogvideo_stage=1)
|
| 556 |
+
|
| 557 |
+
# TODO: check it
|
| 558 |
+
|
| 559 |
+
def final_forward(self, logits, **kwargs):
|
| 560 |
+
logits_parallel = logits
|
| 561 |
+
logits_parallel = torch.nn.functional.linear(
|
| 562 |
+
logits_parallel.float(),
|
| 563 |
+
self.transformer.word_embeddings.weight[:20000].float())
|
| 564 |
+
return logits_parallel
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
class InferenceModel_Interpolate(CogVideoCacheModel):
|
| 568 |
+
def __init__(self, args, transformer=None, parallel_output=True):
|
| 569 |
+
super().__init__(args,
|
| 570 |
+
transformer=transformer,
|
| 571 |
+
parallel_output=parallel_output,
|
| 572 |
+
window_size=10,
|
| 573 |
+
cogvideo_stage=2)
|
| 574 |
+
|
| 575 |
+
# TODO: check it
|
| 576 |
+
|
| 577 |
+
def final_forward(self, logits, **kwargs):
|
| 578 |
+
logits_parallel = logits
|
| 579 |
+
logits_parallel = torch.nn.functional.linear(
|
| 580 |
+
logits_parallel.float(),
|
| 581 |
+
self.transformer.word_embeddings.weight[:20000].float())
|
| 582 |
+
return logits_parallel
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def get_default_args() -> argparse.Namespace:
|
| 586 |
+
known = argparse.Namespace(generate_frame_num=5,
|
| 587 |
+
coglm_temperature2=0.89,
|
| 588 |
+
use_guidance_stage1=True,
|
| 589 |
+
use_guidance_stage2=False,
|
| 590 |
+
guidance_alpha=3.0,
|
| 591 |
+
stage_1=True,
|
| 592 |
+
stage_2=False,
|
| 593 |
+
both_stages=False,
|
| 594 |
+
parallel_size=1,
|
| 595 |
+
stage1_max_inference_batch_size=-1,
|
| 596 |
+
multi_gpu=False,
|
| 597 |
+
layout='64, 464, 2064',
|
| 598 |
+
window_size=10,
|
| 599 |
+
additional_seqlen=2000,
|
| 600 |
+
cogvideo_stage=1)
|
| 601 |
+
|
| 602 |
+
args_list = [
|
| 603 |
+
'--tokenizer-type',
|
| 604 |
+
'fake',
|
| 605 |
+
'--mode',
|
| 606 |
+
'inference',
|
| 607 |
+
'--distributed-backend',
|
| 608 |
+
'nccl',
|
| 609 |
+
'--fp16',
|
| 610 |
+
'--model-parallel-size',
|
| 611 |
+
'1',
|
| 612 |
+
'--temperature',
|
| 613 |
+
'1.05',
|
| 614 |
+
'--top_k',
|
| 615 |
+
'12',
|
| 616 |
+
'--sandwich-ln',
|
| 617 |
+
'--seed',
|
| 618 |
+
'1234',
|
| 619 |
+
'--num-workers',
|
| 620 |
+
'0',
|
| 621 |
+
'--batch-size',
|
| 622 |
+
'1',
|
| 623 |
+
'--max-inference-batch-size',
|
| 624 |
+
'8',
|
| 625 |
+
]
|
| 626 |
+
args = get_args(args_list)
|
| 627 |
+
args = argparse.Namespace(**vars(args), **vars(known))
|
| 628 |
+
args.layout = [int(x) for x in args.layout.split(',')]
|
| 629 |
+
args.do_train = False
|
| 630 |
+
return args
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
class Model:
|
| 634 |
+
def __init__(self, only_first_stage: bool = False):
|
| 635 |
+
self.args = get_default_args()
|
| 636 |
+
if only_first_stage:
|
| 637 |
+
self.args.stage_1 = True
|
| 638 |
+
self.args.both_stages = False
|
| 639 |
+
else:
|
| 640 |
+
self.args.stage_1 = False
|
| 641 |
+
self.args.both_stages = True
|
| 642 |
+
|
| 643 |
+
self.tokenizer = self.load_tokenizer()
|
| 644 |
+
|
| 645 |
+
self.model_stage1, self.args = self.load_model_stage1()
|
| 646 |
+
self.model_stage2, self.args = self.load_model_stage2()
|
| 647 |
+
|
| 648 |
+
self.strategy_cogview2, self.strategy_cogvideo = self.load_strategies()
|
| 649 |
+
self.dsr = self.load_dsr()
|
| 650 |
+
|
| 651 |
+
self.device = torch.device(self.args.device)
|
| 652 |
+
|
| 653 |
+
def load_tokenizer(self) -> IceTokenizer:
|
| 654 |
+
logger.info('--- load_tokenizer ---')
|
| 655 |
+
start = time.perf_counter()
|
| 656 |
+
|
| 657 |
+
tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix())
|
| 658 |
+
tokenizer.add_special_tokens(
|
| 659 |
+
['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
|
| 660 |
+
|
| 661 |
+
elapsed = time.perf_counter() - start
|
| 662 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 663 |
+
return tokenizer
|
| 664 |
+
|
| 665 |
+
def load_model_stage1(
|
| 666 |
+
self) -> tuple[CogVideoCacheModel, argparse.Namespace]:
|
| 667 |
+
logger.info('--- load_model_stage1 ---')
|
| 668 |
+
start = time.perf_counter()
|
| 669 |
+
|
| 670 |
+
args = self.args
|
| 671 |
+
model_stage1, args = InferenceModel_Sequential.from_pretrained(
|
| 672 |
+
args, 'cogvideo-stage1')
|
| 673 |
+
model_stage1.eval()
|
| 674 |
+
if args.both_stages:
|
| 675 |
+
model_stage1 = model_stage1.cpu()
|
| 676 |
+
|
| 677 |
+
elapsed = time.perf_counter() - start
|
| 678 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 679 |
+
return model_stage1, args
|
| 680 |
+
|
| 681 |
+
def load_model_stage2(
|
| 682 |
+
self) -> tuple[CogVideoCacheModel | None, argparse.Namespace]:
|
| 683 |
+
logger.info('--- load_model_stage2 ---')
|
| 684 |
+
start = time.perf_counter()
|
| 685 |
+
|
| 686 |
+
args = self.args
|
| 687 |
+
if args.both_stages:
|
| 688 |
+
model_stage2, args = InferenceModel_Interpolate.from_pretrained(
|
| 689 |
+
args, 'cogvideo-stage2')
|
| 690 |
+
model_stage2.eval()
|
| 691 |
+
if args.both_stages:
|
| 692 |
+
model_stage2 = model_stage2.cpu()
|
| 693 |
+
else:
|
| 694 |
+
model_stage2 = None
|
| 695 |
+
|
| 696 |
+
elapsed = time.perf_counter() - start
|
| 697 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 698 |
+
return model_stage2, args
|
| 699 |
+
|
| 700 |
+
def load_strategies(self) -> tuple[CoglmStrategy, CoglmStrategy]:
|
| 701 |
+
logger.info('--- load_strategies ---')
|
| 702 |
+
start = time.perf_counter()
|
| 703 |
+
|
| 704 |
+
invalid_slices = [slice(self.tokenizer.num_image_tokens, None)]
|
| 705 |
+
strategy_cogview2 = CoglmStrategy(invalid_slices,
|
| 706 |
+
temperature=1.0,
|
| 707 |
+
top_k=16)
|
| 708 |
+
strategy_cogvideo = CoglmStrategy(
|
| 709 |
+
invalid_slices,
|
| 710 |
+
temperature=self.args.temperature,
|
| 711 |
+
top_k=self.args.top_k,
|
| 712 |
+
temperature2=self.args.coglm_temperature2)
|
| 713 |
+
|
| 714 |
+
elapsed = time.perf_counter() - start
|
| 715 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 716 |
+
return strategy_cogview2, strategy_cogvideo
|
| 717 |
+
|
| 718 |
+
def load_dsr(self) -> DirectSuperResolution | None:
|
| 719 |
+
logger.info('--- load_dsr ---')
|
| 720 |
+
start = time.perf_counter()
|
| 721 |
+
|
| 722 |
+
if self.args.both_stages:
|
| 723 |
+
path = auto_create('cogview2-dsr', path=None)
|
| 724 |
+
dsr = DirectSuperResolution(self.args,
|
| 725 |
+
path,
|
| 726 |
+
max_bz=12,
|
| 727 |
+
onCUDA=False)
|
| 728 |
+
else:
|
| 729 |
+
dsr = None
|
| 730 |
+
|
| 731 |
+
elapsed = time.perf_counter() - start
|
| 732 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 733 |
+
return dsr
|
| 734 |
+
|
| 735 |
+
@torch.inference_mode()
|
| 736 |
+
def process_stage1(self,
|
| 737 |
+
model,
|
| 738 |
+
seq_text,
|
| 739 |
+
duration,
|
| 740 |
+
video_raw_text=None,
|
| 741 |
+
video_guidance_text='视频',
|
| 742 |
+
image_text_suffix='',
|
| 743 |
+
batch_size=1):
|
| 744 |
+
process_start_time = time.perf_counter()
|
| 745 |
+
|
| 746 |
+
generate_frame_num = self.args.generate_frame_num
|
| 747 |
+
tokenizer = self.tokenizer
|
| 748 |
+
use_guide = self.args.use_guidance_stage1
|
| 749 |
+
|
| 750 |
+
if next(model.parameters()).device != self.device:
|
| 751 |
+
move_start_time = time.perf_counter()
|
| 752 |
+
logger.debug('moving stage 1 model to cuda')
|
| 753 |
+
|
| 754 |
+
model = model.to(self.device)
|
| 755 |
+
|
| 756 |
+
elapsed = time.perf_counter() - move_start_time
|
| 757 |
+
logger.debug(f'moving in model1 takes time: {elapsed:.2f}')
|
| 758 |
+
|
| 759 |
+
if video_raw_text is None:
|
| 760 |
+
video_raw_text = seq_text
|
| 761 |
+
mbz = self.args.stage1_max_inference_batch_size if self.args.stage1_max_inference_batch_size > 0 else self.args.max_inference_batch_size
|
| 762 |
+
assert batch_size < mbz or batch_size % mbz == 0
|
| 763 |
+
frame_len = 400
|
| 764 |
+
|
| 765 |
+
# generate the first frame:
|
| 766 |
+
enc_text = tokenizer.encode(seq_text + image_text_suffix)
|
| 767 |
+
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1] * 400
|
| 768 |
+
logger.info(
|
| 769 |
+
f'[Generating First Frame with CogView2] Raw text: {tokenizer.decode(enc_text):s}'
|
| 770 |
+
)
|
| 771 |
+
text_len_1st = len(seq_1st) - frame_len * 1 - 1
|
| 772 |
+
|
| 773 |
+
seq_1st = torch.tensor(seq_1st, dtype=torch.long,
|
| 774 |
+
device=self.device).unsqueeze(0)
|
| 775 |
+
output_list_1st = []
|
| 776 |
+
for tim in range(max(batch_size // mbz, 1)):
|
| 777 |
+
start_time = time.perf_counter()
|
| 778 |
+
output_list_1st.append(
|
| 779 |
+
my_filling_sequence(
|
| 780 |
+
model,
|
| 781 |
+
tokenizer,
|
| 782 |
+
self.args,
|
| 783 |
+
seq_1st.clone(),
|
| 784 |
+
batch_size=min(batch_size, mbz),
|
| 785 |
+
get_masks_and_position_ids=
|
| 786 |
+
get_masks_and_position_ids_stage1,
|
| 787 |
+
text_len=text_len_1st,
|
| 788 |
+
frame_len=frame_len,
|
| 789 |
+
strategy=self.strategy_cogview2,
|
| 790 |
+
strategy2=self.strategy_cogvideo,
|
| 791 |
+
log_text_attention_weights=1.4,
|
| 792 |
+
enforce_no_swin=True,
|
| 793 |
+
mode_stage1=True,
|
| 794 |
+
)[0])
|
| 795 |
+
elapsed = time.perf_counter() - start_time
|
| 796 |
+
logger.info(f'[First Frame] Elapsed: {elapsed:.2f}')
|
| 797 |
+
output_tokens_1st = torch.cat(output_list_1st, dim=0)
|
| 798 |
+
given_tokens = output_tokens_1st[:, text_len_1st + 1:text_len_1st +
|
| 799 |
+
401].unsqueeze(
|
| 800 |
+
1
|
| 801 |
+
) # given_tokens.shape: [bs, frame_num, 400]
|
| 802 |
+
|
| 803 |
+
# generate subsequent frames:
|
| 804 |
+
total_frames = generate_frame_num
|
| 805 |
+
enc_duration = tokenizer.encode(f'{float(duration)}秒')
|
| 806 |
+
if use_guide:
|
| 807 |
+
video_raw_text = video_raw_text + ' 视频'
|
| 808 |
+
enc_text_video = tokenizer.encode(video_raw_text)
|
| 809 |
+
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [
|
| 810 |
+
tokenizer['<start_of_image>']
|
| 811 |
+
] + [-1] * 400 * generate_frame_num
|
| 812 |
+
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(
|
| 813 |
+
video_guidance_text) + [tokenizer['<start_of_image>']
|
| 814 |
+
] + [-1] * 400 * generate_frame_num
|
| 815 |
+
logger.info(
|
| 816 |
+
f'[Stage1: Generating Subsequent Frames, Frame Rate {4/duration:.1f}] raw text: {tokenizer.decode(enc_text_video):s}'
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
text_len = len(seq) - frame_len * generate_frame_num - 1
|
| 820 |
+
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1
|
| 821 |
+
seq = torch.tensor(seq, dtype=torch.long,
|
| 822 |
+
device=self.device).unsqueeze(0).repeat(
|
| 823 |
+
batch_size, 1)
|
| 824 |
+
guider_seq = torch.tensor(guider_seq,
|
| 825 |
+
dtype=torch.long,
|
| 826 |
+
device=self.device).unsqueeze(0).repeat(
|
| 827 |
+
batch_size, 1)
|
| 828 |
+
|
| 829 |
+
for given_frame_id in range(given_tokens.shape[1]):
|
| 830 |
+
seq[:, text_len + 1 + given_frame_id * 400:text_len + 1 +
|
| 831 |
+
(given_frame_id + 1) * 400] = given_tokens[:, given_frame_id]
|
| 832 |
+
guider_seq[:, guider_text_len + 1 +
|
| 833 |
+
given_frame_id * 400:guider_text_len + 1 +
|
| 834 |
+
(given_frame_id + 1) *
|
| 835 |
+
400] = given_tokens[:, given_frame_id]
|
| 836 |
+
output_list = []
|
| 837 |
+
|
| 838 |
+
if use_guide:
|
| 839 |
+
video_log_text_attention_weights = 0
|
| 840 |
+
else:
|
| 841 |
+
guider_seq = None
|
| 842 |
+
video_log_text_attention_weights = 1.4
|
| 843 |
+
|
| 844 |
+
for tim in range(max(batch_size // mbz, 1)):
|
| 845 |
+
input_seq = seq[:min(batch_size, mbz)].clone(
|
| 846 |
+
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone()
|
| 847 |
+
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone()
|
| 848 |
+
if tim == 0 else guider_seq[mbz * tim:mbz *
|
| 849 |
+
(tim + 1)].clone()
|
| 850 |
+
) if guider_seq is not None else None
|
| 851 |
+
output_list.append(
|
| 852 |
+
my_filling_sequence(
|
| 853 |
+
model,
|
| 854 |
+
tokenizer,
|
| 855 |
+
self.args,
|
| 856 |
+
input_seq,
|
| 857 |
+
batch_size=min(batch_size, mbz),
|
| 858 |
+
get_masks_and_position_ids=
|
| 859 |
+
get_masks_and_position_ids_stage1,
|
| 860 |
+
text_len=text_len,
|
| 861 |
+
frame_len=frame_len,
|
| 862 |
+
strategy=self.strategy_cogview2,
|
| 863 |
+
strategy2=self.strategy_cogvideo,
|
| 864 |
+
log_text_attention_weights=video_log_text_attention_weights,
|
| 865 |
+
guider_seq=guider_seq2,
|
| 866 |
+
guider_text_len=guider_text_len,
|
| 867 |
+
guidance_alpha=self.args.guidance_alpha,
|
| 868 |
+
limited_spatial_channel_mem=True,
|
| 869 |
+
mode_stage1=True,
|
| 870 |
+
)[0])
|
| 871 |
+
|
| 872 |
+
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len:]
|
| 873 |
+
|
| 874 |
+
if self.args.both_stages:
|
| 875 |
+
move_start_time = time.perf_counter()
|
| 876 |
+
logger.debug('moving stage 1 model to cpu')
|
| 877 |
+
model = model.cpu()
|
| 878 |
+
torch.cuda.empty_cache()
|
| 879 |
+
elapsed = time.perf_counter() - move_start_time
|
| 880 |
+
logger.debug(f'moving in model1 takes time: {elapsed:.2f}')
|
| 881 |
+
|
| 882 |
+
# decoding
|
| 883 |
+
res = []
|
| 884 |
+
for seq in output_tokens:
|
| 885 |
+
decoded_imgs = [
|
| 886 |
+
self.postprocess(
|
| 887 |
+
torch.nn.functional.interpolate(tokenizer.decode(
|
| 888 |
+
image_ids=seq.tolist()[i * 400:(i + 1) * 400]),
|
| 889 |
+
size=(480, 480))[0])
|
| 890 |
+
for i in range(total_frames)
|
| 891 |
+
]
|
| 892 |
+
res.append(decoded_imgs) # only the last image (target)
|
| 893 |
+
|
| 894 |
+
assert len(res) == batch_size
|
| 895 |
+
tokens = output_tokens[:, :+total_frames * 400].reshape(
|
| 896 |
+
-1, total_frames, 400).cpu()
|
| 897 |
+
|
| 898 |
+
elapsed = time.perf_counter() - process_start_time
|
| 899 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 900 |
+
return tokens, res[0]
|
| 901 |
+
|
| 902 |
+
@torch.inference_mode()
|
| 903 |
+
def process_stage2(self,
|
| 904 |
+
model,
|
| 905 |
+
seq_text,
|
| 906 |
+
duration,
|
| 907 |
+
parent_given_tokens,
|
| 908 |
+
video_raw_text=None,
|
| 909 |
+
video_guidance_text='视频',
|
| 910 |
+
gpu_rank=0,
|
| 911 |
+
gpu_parallel_size=1):
|
| 912 |
+
process_start_time = time.perf_counter()
|
| 913 |
+
|
| 914 |
+
generate_frame_num = self.args.generate_frame_num
|
| 915 |
+
tokenizer = self.tokenizer
|
| 916 |
+
use_guidance = self.args.use_guidance_stage2
|
| 917 |
+
|
| 918 |
+
stage2_start_time = time.perf_counter()
|
| 919 |
+
|
| 920 |
+
if next(model.parameters()).device != self.device:
|
| 921 |
+
move_start_time = time.perf_counter()
|
| 922 |
+
logger.debug('moving stage-2 model to cuda')
|
| 923 |
+
|
| 924 |
+
model = model.to(self.device)
|
| 925 |
+
|
| 926 |
+
elapsed = time.perf_counter() - move_start_time
|
| 927 |
+
logger.debug(f'moving in stage-2 model takes time: {elapsed:.2f}')
|
| 928 |
+
|
| 929 |
+
try:
|
| 930 |
+
sample_num_allgpu = parent_given_tokens.shape[0]
|
| 931 |
+
sample_num = sample_num_allgpu // gpu_parallel_size
|
| 932 |
+
assert sample_num * gpu_parallel_size == sample_num_allgpu
|
| 933 |
+
parent_given_tokens = parent_given_tokens[gpu_rank *
|
| 934 |
+
sample_num:(gpu_rank +
|
| 935 |
+
1) *
|
| 936 |
+
sample_num]
|
| 937 |
+
except:
|
| 938 |
+
logger.critical('No frame_tokens found in interpolation, skip')
|
| 939 |
+
return False, []
|
| 940 |
+
|
| 941 |
+
# CogVideo Stage2 Generation
|
| 942 |
+
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
|
| 943 |
+
parent_given_tokens_num = parent_given_tokens.shape[1]
|
| 944 |
+
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2
|
| 945 |
+
generate_batchsize_total = generate_batchsize_persample * sample_num
|
| 946 |
+
total_frames = generate_frame_num
|
| 947 |
+
frame_len = 400
|
| 948 |
+
enc_text = tokenizer.encode(seq_text)
|
| 949 |
+
enc_duration = tokenizer.encode(str(float(duration)) + '秒')
|
| 950 |
+
seq = enc_duration + [tokenizer['<n>']] + enc_text + [
|
| 951 |
+
tokenizer['<start_of_image>']
|
| 952 |
+
] + [-1] * 400 * generate_frame_num
|
| 953 |
+
text_len = len(seq) - frame_len * generate_frame_num - 1
|
| 954 |
+
|
| 955 |
+
logger.info(
|
| 956 |
+
f'[Stage2: Generating Frames, Frame Rate {int(4/duration):d}] raw text: {tokenizer.decode(enc_text):s}'
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
# generation
|
| 960 |
+
seq = torch.tensor(seq, dtype=torch.long,
|
| 961 |
+
device=self.device).unsqueeze(0).repeat(
|
| 962 |
+
generate_batchsize_total, 1)
|
| 963 |
+
for sample_i in range(sample_num):
|
| 964 |
+
for i in range(generate_batchsize_persample):
|
| 965 |
+
seq[sample_i * generate_batchsize_persample +
|
| 966 |
+
i][text_len + 1:text_len + 1 +
|
| 967 |
+
400] = parent_given_tokens[sample_i][2 * i]
|
| 968 |
+
seq[sample_i * generate_batchsize_persample +
|
| 969 |
+
i][text_len + 1 + 400:text_len + 1 +
|
| 970 |
+
800] = parent_given_tokens[sample_i][2 * i + 1]
|
| 971 |
+
seq[sample_i * generate_batchsize_persample +
|
| 972 |
+
i][text_len + 1 + 800:text_len + 1 +
|
| 973 |
+
1200] = parent_given_tokens[sample_i][2 * i + 2]
|
| 974 |
+
|
| 975 |
+
if use_guidance:
|
| 976 |
+
guider_seq = enc_duration + [
|
| 977 |
+
tokenizer['<n>']
|
| 978 |
+
] + tokenizer.encode(video_guidance_text) + [
|
| 979 |
+
tokenizer['<start_of_image>']
|
| 980 |
+
] + [-1] * 400 * generate_frame_num
|
| 981 |
+
guider_text_len = len(
|
| 982 |
+
guider_seq) - frame_len * generate_frame_num - 1
|
| 983 |
+
guider_seq = torch.tensor(
|
| 984 |
+
guider_seq, dtype=torch.long,
|
| 985 |
+
device=self.device).unsqueeze(0).repeat(
|
| 986 |
+
generate_batchsize_total, 1)
|
| 987 |
+
for sample_i in range(sample_num):
|
| 988 |
+
for i in range(generate_batchsize_persample):
|
| 989 |
+
guider_seq[sample_i * generate_batchsize_persample +
|
| 990 |
+
i][text_len + 1:text_len + 1 +
|
| 991 |
+
400] = parent_given_tokens[sample_i][2 *
|
| 992 |
+
i]
|
| 993 |
+
guider_seq[sample_i * generate_batchsize_persample +
|
| 994 |
+
i][text_len + 1 + 400:text_len + 1 +
|
| 995 |
+
800] = parent_given_tokens[sample_i][2 *
|
| 996 |
+
i +
|
| 997 |
+
1]
|
| 998 |
+
guider_seq[sample_i * generate_batchsize_persample +
|
| 999 |
+
i][text_len + 1 + 800:text_len + 1 +
|
| 1000 |
+
1200] = parent_given_tokens[sample_i][2 *
|
| 1001 |
+
i +
|
| 1002 |
+
2]
|
| 1003 |
+
video_log_text_attention_weights = 0
|
| 1004 |
+
else:
|
| 1005 |
+
guider_seq = None
|
| 1006 |
+
guider_text_len = 0
|
| 1007 |
+
video_log_text_attention_weights = 1.4
|
| 1008 |
+
|
| 1009 |
+
mbz = self.args.max_inference_batch_size
|
| 1010 |
+
|
| 1011 |
+
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
|
| 1012 |
+
output_list = []
|
| 1013 |
+
start_time = time.perf_counter()
|
| 1014 |
+
for tim in range(max(generate_batchsize_total // mbz, 1)):
|
| 1015 |
+
input_seq = seq[:min(generate_batchsize_total, mbz)].clone(
|
| 1016 |
+
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone()
|
| 1017 |
+
guider_seq2 = (
|
| 1018 |
+
guider_seq[:min(generate_batchsize_total, mbz)].clone()
|
| 1019 |
+
if tim == 0 else guider_seq[mbz * tim:mbz *
|
| 1020 |
+
(tim + 1)].clone()
|
| 1021 |
+
) if guider_seq is not None else None
|
| 1022 |
+
output_list.append(
|
| 1023 |
+
my_filling_sequence(
|
| 1024 |
+
model,
|
| 1025 |
+
tokenizer,
|
| 1026 |
+
self.args,
|
| 1027 |
+
input_seq,
|
| 1028 |
+
batch_size=min(generate_batchsize_total, mbz),
|
| 1029 |
+
get_masks_and_position_ids=
|
| 1030 |
+
get_masks_and_position_ids_stage2,
|
| 1031 |
+
text_len=text_len,
|
| 1032 |
+
frame_len=frame_len,
|
| 1033 |
+
strategy=self.strategy_cogview2,
|
| 1034 |
+
strategy2=self.strategy_cogvideo,
|
| 1035 |
+
log_text_attention_weights=
|
| 1036 |
+
video_log_text_attention_weights,
|
| 1037 |
+
mode_stage1=False,
|
| 1038 |
+
guider_seq=guider_seq2,
|
| 1039 |
+
guider_text_len=guider_text_len,
|
| 1040 |
+
guidance_alpha=self.args.guidance_alpha,
|
| 1041 |
+
limited_spatial_channel_mem=True,
|
| 1042 |
+
)[0])
|
| 1043 |
+
elapsed = time.perf_counter() - start_time
|
| 1044 |
+
logger.info(f'Duration {duration:.2f}, Elapsed: {elapsed:.2f}\n')
|
| 1045 |
+
|
| 1046 |
+
output_tokens = torch.cat(output_list, dim=0)
|
| 1047 |
+
output_tokens = output_tokens[:, text_len + 1:text_len + 1 +
|
| 1048 |
+
(total_frames) * 400].reshape(
|
| 1049 |
+
sample_num, -1,
|
| 1050 |
+
400 * total_frames)
|
| 1051 |
+
output_tokens_merge = torch.cat(
|
| 1052 |
+
(output_tokens[:, :, :1 * 400], output_tokens[:, :,
|
| 1053 |
+
400 * 3:4 * 400],
|
| 1054 |
+
output_tokens[:, :, 400 * 1:2 * 400],
|
| 1055 |
+
output_tokens[:, :, 400 * 4:(total_frames) * 400]),
|
| 1056 |
+
dim=2).reshape(sample_num, -1, 400)
|
| 1057 |
+
|
| 1058 |
+
output_tokens_merge = torch.cat(
|
| 1059 |
+
(output_tokens_merge, output_tokens[:, -1:, 400 * 2:3 * 400]),
|
| 1060 |
+
dim=1)
|
| 1061 |
+
duration /= 2
|
| 1062 |
+
parent_given_tokens = output_tokens_merge
|
| 1063 |
+
|
| 1064 |
+
if self.args.both_stages:
|
| 1065 |
+
move_start_time = time.perf_counter()
|
| 1066 |
+
logger.debug('moving stage 2 model to cpu')
|
| 1067 |
+
model = model.cpu()
|
| 1068 |
+
torch.cuda.empty_cache()
|
| 1069 |
+
elapsed = time.perf_counter() - move_start_time
|
| 1070 |
+
logger.debug(f'moving out model2 takes time: {elapsed:.2f}')
|
| 1071 |
+
|
| 1072 |
+
elapsed = time.perf_counter() - stage2_start_time
|
| 1073 |
+
logger.info(f'CogVideo Stage2 completed. Elapsed: {elapsed:.2f}\n')
|
| 1074 |
+
|
| 1075 |
+
# direct super-resolution by CogView2
|
| 1076 |
+
logger.info('[Direct super-resolution]')
|
| 1077 |
+
dsr_start_time = time.perf_counter()
|
| 1078 |
+
|
| 1079 |
+
enc_text = tokenizer.encode(seq_text)
|
| 1080 |
+
frame_num_per_sample = parent_given_tokens.shape[1]
|
| 1081 |
+
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
|
| 1082 |
+
text_seq = torch.tensor(enc_text, dtype=torch.long,
|
| 1083 |
+
device=self.device).unsqueeze(0).repeat(
|
| 1084 |
+
parent_given_tokens_2d.shape[0], 1)
|
| 1085 |
+
sred_tokens = self.dsr(text_seq, parent_given_tokens_2d)
|
| 1086 |
+
|
| 1087 |
+
decoded_sr_videos = []
|
| 1088 |
+
for sample_i in range(sample_num):
|
| 1089 |
+
decoded_sr_imgs = []
|
| 1090 |
+
for frame_i in range(frame_num_per_sample):
|
| 1091 |
+
decoded_sr_img = tokenizer.decode(
|
| 1092 |
+
image_ids=sred_tokens[frame_i + sample_i *
|
| 1093 |
+
frame_num_per_sample][-3600:])
|
| 1094 |
+
decoded_sr_imgs.append(
|
| 1095 |
+
self.postprocess(
|
| 1096 |
+
torch.nn.functional.interpolate(decoded_sr_img,
|
| 1097 |
+
size=(480, 480))[0]))
|
| 1098 |
+
decoded_sr_videos.append(decoded_sr_imgs)
|
| 1099 |
+
|
| 1100 |
+
elapsed = time.perf_counter() - dsr_start_time
|
| 1101 |
+
logger.info(
|
| 1102 |
+
f'Direct super-resolution completed. Elapsed: {elapsed:.2f}')
|
| 1103 |
+
|
| 1104 |
+
elapsed = time.perf_counter() - process_start_time
|
| 1105 |
+
logger.info(f'--- done ({elapsed=:.3f}) ---')
|
| 1106 |
+
return True, decoded_sr_videos[0]
|
| 1107 |
+
|
| 1108 |
+
@staticmethod
|
| 1109 |
+
def postprocess(tensor: torch.Tensor) -> np.ndarray:
|
| 1110 |
+
return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute(
|
| 1111 |
+
1, 2, 0).to(torch.uint8).numpy()
|
| 1112 |
+
|
| 1113 |
+
def run(self, text: str, seed: int,
|
| 1114 |
+
only_first_stage: bool) -> list[np.ndarray]:
|
| 1115 |
+
logger.info('==================== run ====================')
|
| 1116 |
+
start = time.perf_counter()
|
| 1117 |
+
|
| 1118 |
+
set_random_seed(seed)
|
| 1119 |
+
|
| 1120 |
+
if only_first_stage:
|
| 1121 |
+
self.args.stage_1 = True
|
| 1122 |
+
self.args.both_stages = False
|
| 1123 |
+
else:
|
| 1124 |
+
self.args.stage_1 = False
|
| 1125 |
+
self.args.both_stages = True
|
| 1126 |
+
|
| 1127 |
+
parent_given_tokens, res = self.process_stage1(
|
| 1128 |
+
self.model_stage1,
|
| 1129 |
+
text,
|
| 1130 |
+
duration=4.0,
|
| 1131 |
+
video_raw_text=text,
|
| 1132 |
+
video_guidance_text='视频',
|
| 1133 |
+
image_text_suffix=' 高清摄影',
|
| 1134 |
+
batch_size=self.args.batch_size)
|
| 1135 |
+
if not only_first_stage:
|
| 1136 |
+
_, res = self.process_stage2(
|
| 1137 |
+
self.model_stage2,
|
| 1138 |
+
text,
|
| 1139 |
+
duration=2.0,
|
| 1140 |
+
parent_given_tokens=parent_given_tokens,
|
| 1141 |
+
video_raw_text=text + ' 视频',
|
| 1142 |
+
video_guidance_text='视频',
|
| 1143 |
+
gpu_rank=0,
|
| 1144 |
+
gpu_parallel_size=1) # TODO: 修改
|
| 1145 |
+
|
| 1146 |
+
elapsed = time.perf_counter() - start
|
| 1147 |
+
logger.info(f'Elapsed: {elapsed:.3f}')
|
| 1148 |
+
logger.info('==================== done ====================')
|
| 1149 |
+
return res
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
class AppModel(Model):
|
| 1153 |
+
def __init__(self, only_first_stage: bool):
|
| 1154 |
+
super().__init__(only_first_stage)
|
| 1155 |
+
self.translator = gr.Interface.load(
|
| 1156 |
+
'spaces/chinhon/translation_eng2ch')
|
| 1157 |
+
|
| 1158 |
+
def to_video(self, frames: list[np.ndarray]) -> str:
|
| 1159 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
| 1160 |
+
if self.args.stage_1:
|
| 1161 |
+
fps = 4
|
| 1162 |
+
else:
|
| 1163 |
+
fps = 8
|
| 1164 |
+
writer = iio.get_writer(out_file.name, fps=fps)
|
| 1165 |
+
for frame in frames:
|
| 1166 |
+
writer.append_data(frame)
|
| 1167 |
+
writer.close()
|
| 1168 |
+
return out_file.name
|
| 1169 |
+
|
| 1170 |
+
def run_with_translation(
|
| 1171 |
+
self, text: str, translate: bool, seed: int, only_first_stage: bool
|
| 1172 |
+
) -> tuple[str | None, np.ndarray | None, list[np.ndarray] | None]:
|
| 1173 |
+
logger.info(f'{text=}, {translate=}, {seed=}, {only_first_stage=}')
|
| 1174 |
+
if translate:
|
| 1175 |
+
text = translated_text = self.translator(text)
|
| 1176 |
+
else:
|
| 1177 |
+
translated_text = None
|
| 1178 |
+
frames = self.run(text, seed, only_first_stage)
|
| 1179 |
+
video_path = self.to_video(frames)
|
| 1180 |
+
return translated_text, video_path, frames
|
patch
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diff --git a/coglm_strategy.py b/coglm_strategy.py
|
| 2 |
+
index d485715..a9eab3b 100644
|
| 3 |
+
--- a/coglm_strategy.py
|
| 4 |
+
+++ b/coglm_strategy.py
|
| 5 |
+
@@ -8,6 +8,7 @@
|
| 6 |
+
|
| 7 |
+
# here put the import lib
|
| 8 |
+
import os
|
| 9 |
+
+import pathlib
|
| 10 |
+
import sys
|
| 11 |
+
import math
|
| 12 |
+
import random
|
| 13 |
+
@@ -58,7 +59,8 @@ class CoglmStrategy:
|
| 14 |
+
self._is_done = False
|
| 15 |
+
self.outlier_count_down = torch.zeros(16)
|
| 16 |
+
self.vis_list = [[]for i in range(16)]
|
| 17 |
+
- self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
|
| 18 |
+
+ cluster_label_path = pathlib.Path(__file__).parent / 'cluster_label2.npy'
|
| 19 |
+
+ self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
|
| 20 |
+
self.start_pos = -1
|
| 21 |
+
self.white_cluster = []
|
| 22 |
+
# self.fout = open('tmp.txt', 'w')
|
| 23 |
+
@@ -98,4 +100,4 @@ class CoglmStrategy:
|
| 24 |
+
|
| 25 |
+
def finalize(self, tokens, mems):
|
| 26 |
+
self._is_done = False
|
| 27 |
+
- return tokens, mems
|
| 28 |
+
|
| 29 |
+
+ return tokens, mems
|
| 30 |
+
diff --git a/sr_pipeline/dsr_sampling.py b/sr_pipeline/dsr_sampling.py
|
| 31 |
+
index 5b8dded..07e97fd 100644
|
| 32 |
+
--- a/sr_pipeline/dsr_sampling.py
|
| 33 |
+
+++ b/sr_pipeline/dsr_sampling.py
|
| 34 |
+
@@ -8,6 +8,7 @@
|
| 35 |
+
|
| 36 |
+
# here put the import lib
|
| 37 |
+
import os
|
| 38 |
+
+import pathlib
|
| 39 |
+
import sys
|
| 40 |
+
import math
|
| 41 |
+
import random
|
| 42 |
+
@@ -28,7 +29,8 @@ class IterativeEntfilterStrategy:
|
| 43 |
+
self.invalid_slices = invalid_slices
|
| 44 |
+
self.temperature = temperature
|
| 45 |
+
self.topk = topk
|
| 46 |
+
- self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
|
| 47 |
+
+ cluster_label_path = pathlib.Path(__file__).parents[1] / 'cluster_label2.npy'
|
| 48 |
+
+ self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
|
pretrained/.gitkeep
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/Sleepychord/Image-Local-Attention@43fee31
|
| 2 |
+
gradio==3.1.0
|
| 3 |
+
icetk==0.0.4
|
| 4 |
+
imageio==2.19.5
|
| 5 |
+
imageio-ffmpeg==0.4.7
|
| 6 |
+
numpy==1.22.4
|
| 7 |
+
opencv-python-headless==4.6.0.66
|
| 8 |
+
SwissArmyTransformer==0.2.9
|
| 9 |
+
torch==1.12.0
|
| 10 |
+
torchvision==0.13.0
|
style.css
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|
| 4 |
+
img#visitor-badge {
|
| 5 |
+
display: block;
|
| 6 |
+
margin: auto;
|
| 7 |
+
}
|