Update app.py
Browse files
app.py
CHANGED
|
@@ -2,359 +2,138 @@ import torch
|
|
| 2 |
import gradio as gr
|
| 3 |
import imageio
|
| 4 |
import numpy as np
|
| 5 |
-
import cv2
|
| 6 |
from PIL import Image
|
| 7 |
-
from torchvision.transforms import ToTensor
|
| 8 |
import spaces
|
| 9 |
import tempfile
|
| 10 |
-
import os
|
| 11 |
-
import gc
|
| 12 |
-
import warnings
|
| 13 |
-
import traceback
|
| 14 |
-
from huggingface_hub import hf_hub_download
|
| 15 |
-
from transformers import pipeline
|
| 16 |
-
from diffusers import DPTForDepthEstimation, DPTImageProcessor
|
| 17 |
-
from accelerate import Accelerator
|
| 18 |
-
|
| 19 |
-
# Suppress warnings
|
| 20 |
-
warnings.filterwarnings("ignore")
|
| 21 |
-
|
| 22 |
-
# Global model cache
|
| 23 |
-
DEPTH_MODEL = None
|
| 24 |
-
DEPTH_PROCESSOR = None
|
| 25 |
-
|
| 26 |
-
class DepthModelManager:
|
| 27 |
-
@staticmethod
|
| 28 |
-
def get_depth_model():
|
| 29 |
-
"""Lazy-loads the depth estimation model on first use"""
|
| 30 |
-
global DEPTH_MODEL, DEPTH_PROCESSOR
|
| 31 |
-
|
| 32 |
-
if DEPTH_MODEL is None:
|
| 33 |
-
try:
|
| 34 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
-
model_id = "Intel/dpt-large"
|
| 36 |
-
|
| 37 |
-
print(f"Loading depth model on {device}...")
|
| 38 |
-
DEPTH_MODEL = DPTForDepthEstimation.from_pretrained(model_id).to(device)
|
| 39 |
-
DEPTH_PROCESSOR = DPTImageProcessor.from_pretrained(model_id)
|
| 40 |
-
print("Depth model loaded successfully")
|
| 41 |
-
except Exception as e:
|
| 42 |
-
print(f"Error loading depth model: {e}")
|
| 43 |
-
raise
|
| 44 |
-
|
| 45 |
-
return DEPTH_MODEL, DEPTH_PROCESSOR
|
| 46 |
-
|
| 47 |
-
@staticmethod
|
| 48 |
-
def generate_depth_map(image):
|
| 49 |
-
"""Generate a depth map from an input image"""
|
| 50 |
-
model, processor = DepthModelManager.get_depth_model()
|
| 51 |
-
device = next(model.parameters()).device
|
| 52 |
-
|
| 53 |
-
# Preprocess the image
|
| 54 |
-
image_size = image.size
|
| 55 |
-
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 56 |
-
|
| 57 |
-
# Get depth prediction
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
outputs = model(**inputs)
|
| 60 |
-
predicted_depth = outputs.predicted_depth
|
| 61 |
-
|
| 62 |
-
# Postprocess the depth map
|
| 63 |
-
prediction = torch.nn.functional.interpolate(
|
| 64 |
-
predicted_depth.unsqueeze(1),
|
| 65 |
-
size=image_size[::-1],
|
| 66 |
-
mode="bicubic",
|
| 67 |
-
align_corners=False,
|
| 68 |
-
).squeeze()
|
| 69 |
-
|
| 70 |
-
# Normalize the depth map
|
| 71 |
-
depth_map = (prediction - prediction.min()) / (prediction.max() - prediction.min())
|
| 72 |
-
depth_map = ToPILImage()(depth_map.cpu())
|
| 73 |
-
|
| 74 |
-
return depth_map
|
| 75 |
|
| 76 |
@spaces.GPU
|
| 77 |
-
def generate_parallax_video(image, depth_map
|
| 78 |
-
amplitude=2.0, k=5.0, fps=30, duration=5.0, smooth_edges=True,
|
| 79 |
-
invert_depth=False, progress=gr.Progress()):
|
| 80 |
"""
|
| 81 |
Generate a 3D parallax video from an image and depth map with the selected animation style.
|
| 82 |
-
|
| 83 |
Args:
|
| 84 |
image (PIL.Image): Input RGB image.
|
| 85 |
-
depth_map (PIL.Image
|
| 86 |
-
use_auto_depth (bool): Whether to auto-generate the depth map.
|
| 87 |
animation_style (str): Animation type ("horizontal", "vertical", "circle", "perspective").
|
| 88 |
amplitude (float): Intensity of camera movement.
|
| 89 |
k (float): Depth displacement scale factor.
|
| 90 |
fps (int): Frames per second.
|
| 91 |
duration (float): Video duration in seconds.
|
| 92 |
-
|
| 93 |
-
invert_depth (bool): Whether to invert the depth map.
|
| 94 |
-
progress (gr.Progress): Gradio progress indicator.
|
| 95 |
-
|
| 96 |
Returns:
|
| 97 |
-
str: Path to the generated video file
|
| 98 |
"""
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def ease_in_out(t):
|
| 165 |
-
return 0.5 * (1 - np.cos(np.pi * t))
|
| 166 |
-
|
| 167 |
-
# Animation and rendering
|
| 168 |
-
progress(0.3, desc="Generating frames...")
|
| 169 |
-
frame_count = 0
|
| 170 |
-
|
| 171 |
-
for frame in range(num_frames):
|
| 172 |
-
# Report progress
|
| 173 |
-
frame_progress = 0.3 + (0.65 * (frame / num_frames))
|
| 174 |
-
progress(frame_progress, desc=f"Rendering frame {frame+1}/{num_frames}")
|
| 175 |
-
|
| 176 |
-
# Normalized time with easing
|
| 177 |
-
t = frame / (num_frames - 1) # [0, 1]
|
| 178 |
-
t_eased = ease_in_out(t)
|
| 179 |
-
|
| 180 |
-
# Calculate camera position based on animation style
|
| 181 |
-
if animation_style == "horizontal":
|
| 182 |
-
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
| 183 |
-
camera_y = 0
|
| 184 |
-
displacement_scale = 1
|
| 185 |
-
elif animation_style == "vertical":
|
| 186 |
-
camera_x = 0
|
| 187 |
-
camera_y = amplitude * np.sin(2 * np.pi * t_eased)
|
| 188 |
-
displacement_scale = 1
|
| 189 |
-
elif animation_style == "circle":
|
| 190 |
-
camera_x = amplitude * np.sin(2 * np.pi * t_eased)
|
| 191 |
-
camera_y = amplitude * np.cos(2 * np.pi * t_eased)
|
| 192 |
-
displacement_scale = 1
|
| 193 |
-
elif animation_style == "perspective":
|
| 194 |
-
# Better perspective effect
|
| 195 |
-
zoom_factor = 0.1 * np.sin(2 * np.pi * t_eased) + 1.0 # [0.9, 1.1]
|
| 196 |
-
camera_x = amplitude * 0.5 * np.sin(2 * np.pi * t_eased)
|
| 197 |
-
camera_y = amplitude * 0.3 * np.sin(2 * np.pi * t_eased)
|
| 198 |
-
displacement_scale = zoom_factor
|
| 199 |
-
else:
|
| 200 |
-
camera_x = 0
|
| 201 |
-
camera_y = 0
|
| 202 |
-
displacement_scale = 1
|
| 203 |
-
|
| 204 |
-
# Compute displacements with a more natural depth response
|
| 205 |
-
displacement_x = displacement_scale * k * camera_x * depth_tensor
|
| 206 |
-
displacement_y = displacement_scale * k * camera_y * depth_tensor
|
| 207 |
-
|
| 208 |
-
# Calculate source coordinates for warping
|
| 209 |
-
source_pixel_x = pixel_grid[:, :, 0] + displacement_x
|
| 210 |
-
source_pixel_y = pixel_grid[:, :, 1] + displacement_y
|
| 211 |
-
|
| 212 |
-
# Normalize coordinates to [-1, 1] for grid_sample
|
| 213 |
-
grid_x = 2 * source_pixel_x / (W - 1) - 1
|
| 214 |
-
grid_y = 2 * source_pixel_y / (H - 1) - 1
|
| 215 |
-
grid = torch.stack((grid_x, grid_y), dim=-1).unsqueeze(0) # (1, H, W, 2)
|
| 216 |
-
|
| 217 |
-
# Warp the image using grid sampling with improved border handling
|
| 218 |
-
warped = torch.nn.functional.grid_sample(
|
| 219 |
-
image_tensor,
|
| 220 |
-
grid,
|
| 221 |
-
align_corners=True,
|
| 222 |
-
mode='bilinear',
|
| 223 |
-
padding_mode='reflection' # Using reflection padding for smoother edges
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
# Convert warped tensor to numpy image
|
| 227 |
-
warped_np = warped.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 228 |
-
# Convert to 8-bit for video
|
| 229 |
-
frame_img = (warped_np * 255).clip(0, 255).astype(np.uint8)
|
| 230 |
-
|
| 231 |
-
# Apply a mild vignette effect to hide edge artifacts
|
| 232 |
-
if smooth_edges:
|
| 233 |
-
h, w = frame_img.shape[:2]
|
| 234 |
-
center_x, center_y = w // 2, h // 2
|
| 235 |
-
max_dist = np.sqrt(center_x**2 + center_y**2)
|
| 236 |
-
y, x = np.ogrid[:h, :w]
|
| 237 |
-
dist = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 238 |
-
vignette = np.clip(1.0 - dist / max_dist * 0.15, 0.95, 1.0)
|
| 239 |
-
frame_img = (frame_img * vignette[:, :, np.newaxis]).astype(np.uint8)
|
| 240 |
-
|
| 241 |
-
# Add frame to video
|
| 242 |
-
writer.append_data(frame_img)
|
| 243 |
-
frame_count += 1
|
| 244 |
-
|
| 245 |
-
# Prevent memory issues by cleaning up tensors
|
| 246 |
-
del grid, warped
|
| 247 |
-
if frame % 10 == 0 and torch.cuda.is_available():
|
| 248 |
-
torch.cuda.empty_cache()
|
| 249 |
-
|
| 250 |
-
# Ensure all frames are written and close the writer
|
| 251 |
writer.close()
|
| 252 |
|
| 253 |
-
|
| 254 |
-
del image_tensor, depth_tensor, pixel_grid
|
| 255 |
-
if torch.cuda.is_available():
|
| 256 |
-
torch.cuda.empty_cache()
|
| 257 |
-
gc.collect()
|
| 258 |
-
|
| 259 |
-
progress(1.0, desc="Processing complete")
|
| 260 |
-
|
| 261 |
-
if frame_count > 0:
|
| 262 |
-
return output_path
|
| 263 |
-
else:
|
| 264 |
-
return "Error: No frames were generated. Please adjust your parameters."
|
| 265 |
-
|
| 266 |
-
except Exception as e:
|
| 267 |
-
# Clean up any resources
|
| 268 |
-
if torch.cuda.is_available():
|
| 269 |
-
torch.cuda.empty_cache()
|
| 270 |
-
|
| 271 |
-
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
| 272 |
-
print(error_msg)
|
| 273 |
-
return f"An error occurred: {str(e)}"
|
| 274 |
|
| 275 |
# Define Gradio interface
|
| 276 |
-
with gr.Blocks(title="3D Parallax Video Generator"
|
| 277 |
-
gr.Markdown("#
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
either provide a depth map or use our built-in depth estimation model to automatically
|
| 283 |
-
generate one. Customize the animation style and parameters to create your desired effect.
|
| 284 |
-
|
| 285 |
-
### Tips for best results:
|
| 286 |
-
- Start with small amplitude and k values (2-5) to avoid extreme distortions
|
| 287 |
-
- The depth map should have white areas for objects closer to camera, black for farther objects
|
| 288 |
-
- For automatic depth generation, images with clear foreground/background separation work best
|
| 289 |
-
- If you see artifacts at the edges, enable the "Smooth edges" option
|
| 290 |
-
""")
|
| 291 |
|
| 292 |
# Input section
|
| 293 |
with gr.Row():
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
with gr.Row():
|
| 298 |
-
use_auto_depth = gr.Checkbox(label="Auto-generate depth map", value=True)
|
| 299 |
-
invert_depth = gr.Checkbox(label="Invert depth map", value=False)
|
| 300 |
-
|
| 301 |
-
depth_input = gr.Image(label="Upload Depth Map (optional)", type="pil")
|
| 302 |
|
| 303 |
# Parameter controls
|
| 304 |
with gr.Row():
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
with gr.Column():
|
| 315 |
-
fps_slider = gr.Slider(15, 60, value=30, label="Frames Per Second", step=1)
|
| 316 |
-
duration_slider = gr.Slider(1, 10, value=3, label="Duration (seconds)", step=0.1)
|
| 317 |
-
smooth_edges = gr.Checkbox(label="Smooth edges (reduces artifacts)", value=True)
|
| 318 |
|
| 319 |
# Output and interaction
|
| 320 |
-
|
| 321 |
-
generate_btn = gr.Button("Generate Video", variant="primary")
|
| 322 |
-
|
| 323 |
video_output = gr.Video(label="Parallax Video")
|
| 324 |
|
| 325 |
-
# Handle automatic depth map generation
|
| 326 |
-
def update_depth_visibility(auto_generate):
|
| 327 |
-
return gr.update(visible=not auto_generate)
|
| 328 |
-
|
| 329 |
-
use_auto_depth.change(update_depth_visibility, inputs=[use_auto_depth], outputs=[depth_input])
|
| 330 |
-
|
| 331 |
# Connect button to function
|
| 332 |
generate_btn.click(
|
| 333 |
fn=generate_parallax_video,
|
| 334 |
-
inputs=[
|
| 335 |
-
image_input,
|
| 336 |
-
depth_input,
|
| 337 |
-
use_auto_depth,
|
| 338 |
-
animation_style,
|
| 339 |
-
amplitude_slider,
|
| 340 |
-
k_slider,
|
| 341 |
-
fps_slider,
|
| 342 |
-
duration_slider,
|
| 343 |
-
smooth_edges,
|
| 344 |
-
invert_depth
|
| 345 |
-
],
|
| 346 |
outputs=video_output
|
| 347 |
)
|
| 348 |
|
| 349 |
-
# Add examples
|
| 350 |
-
gr.Examples(
|
| 351 |
-
examples=[
|
| 352 |
-
["https://huggingface.co/spaces/stabilityai/stable-diffusion/resolve/main/images/lincoln.jpg"],
|
| 353 |
-
["https://images.unsplash.com/photo-1546614042-7df3c24c9e5d"],
|
| 354 |
-
["https://images.unsplash.com/photo-1563473213013-de2a0133c100"],
|
| 355 |
-
],
|
| 356 |
-
inputs=[image_input],
|
| 357 |
-
)
|
| 358 |
-
|
| 359 |
# Launch the application
|
| 360 |
demo.launch()
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import imageio
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
+
from torchvision.transforms import ToTensor
|
| 7 |
import spaces
|
| 8 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
@spaces.GPU
|
| 11 |
+
def generate_parallax_video(image, depth_map, animation_style, amplitude, k, fps, duration):
|
|
|
|
|
|
|
| 12 |
"""
|
| 13 |
Generate a 3D parallax video from an image and depth map with the selected animation style.
|
| 14 |
+
|
| 15 |
Args:
|
| 16 |
image (PIL.Image): Input RGB image.
|
| 17 |
+
depth_map (PIL.Image): Grayscale depth map (white = closer, black = farther).
|
|
|
|
| 18 |
animation_style (str): Animation type ("horizontal", "vertical", "circle", "perspective").
|
| 19 |
amplitude (float): Intensity of camera movement.
|
| 20 |
k (float): Depth displacement scale factor.
|
| 21 |
fps (int): Frames per second.
|
| 22 |
duration (float): Video duration in seconds.
|
| 23 |
+
|
|
|
|
|
|
|
|
|
|
| 24 |
Returns:
|
| 25 |
+
str: Path to the generated video file.
|
| 26 |
"""
|
| 27 |
+
# Validate input dimensions
|
| 28 |
+
if image.size != depth_map.size:
|
| 29 |
+
raise ValueError("Image and depth map must have the same dimensions")
|
| 30 |
+
|
| 31 |
+
# Convert inputs to PyTorch tensors on GPU
|
| 32 |
+
image_tensor = ToTensor()(image).unsqueeze(0).to('cuda') # Shape: (1, 3, H, W)
|
| 33 |
+
depth_tensor = ToTensor()(depth_map.convert('L')).to('cuda') # Shape: (1, 1, H, W)
|
| 34 |
+
depth_tensor = (depth_tensor - depth_tensor.min()) / (depth_tensor.max() - depth_tensor.min() + 1e-6)
|
| 35 |
+
depth_tensor = depth_tensor.squeeze(0).squeeze(0) # Shape: (H, W)
|
| 36 |
+
|
| 37 |
+
H, W = image_tensor.shape[2], image_tensor.shape[3]
|
| 38 |
+
|
| 39 |
+
# Create coordinate grid for warping
|
| 40 |
+
x = torch.arange(0, W).float().to('cuda')
|
| 41 |
+
y = torch.arange(0, H).float().to('cuda')
|
| 42 |
+
xx, yy = torch.meshgrid(x, y, indexing='xy')
|
| 43 |
+
pixel_grid = torch.stack((xx, yy), dim=-1) # Shape: (H, W, 2)
|
| 44 |
+
|
| 45 |
+
# Calculate number of frames
|
| 46 |
+
num_frames = int(fps * duration)
|
| 47 |
+
frames = []
|
| 48 |
+
|
| 49 |
+
# Generate frames based on animation style
|
| 50 |
+
for frame in range(num_frames):
|
| 51 |
+
t = frame / num_frames # Normalized time [0, 1]
|
| 52 |
+
if animation_style == "horizontal":
|
| 53 |
+
camera_x = amplitude * np.sin(2 * np.pi * t)
|
| 54 |
+
camera_y = 0
|
| 55 |
+
displacement_scale = 1
|
| 56 |
+
elif animation_style == "vertical":
|
| 57 |
+
camera_x = 0
|
| 58 |
+
camera_y = amplitude * np.sin(2 * np.pi * t)
|
| 59 |
+
displacement_scale = 1
|
| 60 |
+
elif animation_style == "circle":
|
| 61 |
+
camera_x = amplitude * np.sin(2 * np.pi * t)
|
| 62 |
+
camera_y = amplitude * np.cos(2 * np.pi * t)
|
| 63 |
+
displacement_scale = 1
|
| 64 |
+
elif animation_style == "perspective":
|
| 65 |
+
camera_x = amplitude # Fixed horizontal base for consistency
|
| 66 |
+
camera_y = 0
|
| 67 |
+
displacement_scale = 1 + 0.5 * np.sin(2 * np.pi * t) # Scales displacement for zoom effect
|
| 68 |
else:
|
| 69 |
+
raise ValueError(f"Unsupported animation style: {animation_style}")
|
| 70 |
+
|
| 71 |
+
# Compute displacements in both x and y directions
|
| 72 |
+
displacement_x = displacement_scale * k * camera_x * depth_tensor
|
| 73 |
+
displacement_y = displacement_scale * k * camera_y * depth_tensor
|
| 74 |
+
|
| 75 |
+
# Calculate source coordinates for warping
|
| 76 |
+
source_pixel_x = pixel_grid[:, :, 0] + displacement_x
|
| 77 |
+
source_pixel_y = pixel_grid[:, :, 1] + displacement_y
|
| 78 |
+
|
| 79 |
+
# Normalize coordinates to [-1, 1] for grid_sample
|
| 80 |
+
grid_x = 2 * source_pixel_x / (W - 1) - 1
|
| 81 |
+
grid_y = 2 * source_pixel_y / (H - 1) - 1
|
| 82 |
+
grid = torch.stack((grid_x, grid_y), dim=-1).unsqueeze(0) # Shape: (1, H, W, 2)
|
| 83 |
+
|
| 84 |
+
# Warp the image using grid sampling
|
| 85 |
+
warped = torch.nn.functional.grid_sample(image_tensor, grid, align_corners=True)
|
| 86 |
+
|
| 87 |
+
# Convert warped tensor to numpy image
|
| 88 |
+
warped_np = warped.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 89 |
+
frame_img = (warped_np * 255).astype(np.uint8)
|
| 90 |
+
frames.append(frame_img)
|
| 91 |
+
|
| 92 |
+
# Save frames as a video
|
| 93 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 94 |
+
output_path = tmpfile.name
|
| 95 |
+
writer = imageio.get_writer(output_path, fps=fps, codec='libx264')
|
| 96 |
+
for frame in frames:
|
| 97 |
+
writer.append_data(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
writer.close()
|
| 99 |
|
| 100 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
# Define Gradio interface
|
| 103 |
+
with gr.Blocks(title="3D Parallax Video Generator") as demo:
|
| 104 |
+
gr.Markdown("# 3D Parallax Video Generator")
|
| 105 |
+
gr.Markdown("""
|
| 106 |
+
Upload an image and its depth map (white = closer, black = farther) to create a 3D parallax video.
|
| 107 |
+
Select an animation style and adjust parameters below. Start with small amplitude and k values to avoid empty frames.
|
| 108 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# Input section
|
| 111 |
with gr.Row():
|
| 112 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 113 |
+
depth_input = gr.Image(type="pil", label="Upload Depth Map")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Parameter controls
|
| 116 |
with gr.Row():
|
| 117 |
+
animation_style = gr.Dropdown(
|
| 118 |
+
choices=["horizontal", "vertical", "circle", "perspective"],
|
| 119 |
+
label="Animation Style",
|
| 120 |
+
value="horizontal"
|
| 121 |
+
)
|
| 122 |
+
amplitude_slider = gr.Slider(0, 10, value=2, label="Amplitude", step=0.1)
|
| 123 |
+
k_slider = gr.Slider(1, 20, value=5, label="Depth Scale (k)", step=0.1)
|
| 124 |
+
fps_slider = gr.Slider(10, 60, value=30, label="Frames Per Second", step=1)
|
| 125 |
+
duration_slider = gr.Slider(1, 10, value=5, label="Duration (seconds)", step=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# Output and interaction
|
| 128 |
+
generate_btn = gr.Button("Generate Video")
|
|
|
|
|
|
|
| 129 |
video_output = gr.Video(label="Parallax Video")
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
# Connect button to function
|
| 132 |
generate_btn.click(
|
| 133 |
fn=generate_parallax_video,
|
| 134 |
+
inputs=[image_input, depth_input, animation_style, amplitude_slider, k_slider, fps_slider, duration_slider],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
outputs=video_output
|
| 136 |
)
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
# Launch the application
|
| 139 |
demo.launch()
|