Spaces:
Sleeping
Sleeping
sunrainyg
commited on
Commit
·
d7f4e54
1
Parent(s):
7b5201e
Update
Browse files
app.py
CHANGED
|
@@ -1,44 +1,114 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
with gr.Blocks(title="Video → Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 18 |
gr.Markdown("""
|
| 19 |
# 🎬 Video → Q&A (Qwen2.5-VL-7B WolfV2)
|
| 20 |
-
- Drag
|
| 21 |
-
- Default `fps=1` (1 frame per second) saves
|
| 22 |
""")
|
| 23 |
|
| 24 |
-
with gr.Row():
|
| 25 |
-
|
| 26 |
-
with gr.Column():
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
with gr.Accordion("Advanced", open=False):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
ask.click(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
)
|
| 42 |
|
|
|
|
|
|
|
| 43 |
if __name__ == "__main__":
|
| 44 |
-
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TorchAoConfig
|
| 5 |
|
| 6 |
+
# ========== Basic Configuration ==========
|
| 7 |
+
MODEL_ID = os.environ.get("MODEL_ID", "Efficient-Large-Model/qwen2_5vl-7b-wolfv2-tuned")
|
| 8 |
+
USE_INT4 = os.environ.get("USE_INT4", "0") == "1"
|
| 9 |
+
|
| 10 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 11 |
+
|
| 12 |
+
quant_cfg = None
|
| 13 |
+
if USE_INT4:
|
| 14 |
+
quant_cfg = TorchAoConfig("int4_weight_only", group_size=128)
|
| 15 |
+
|
| 16 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
MODEL_ID,
|
| 18 |
+
device_map="auto",
|
| 19 |
+
torch_dtype=dtype,
|
| 20 |
+
attn_implementation="sdpa",
|
| 21 |
+
quantization_config=quant_cfg,
|
| 22 |
)
|
| 23 |
|
| 24 |
+
MIN_PIXELS = 256 * 28 * 28
|
| 25 |
+
MAX_PIXELS = 1024 * 28 * 28
|
| 26 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
|
| 27 |
+
|
| 28 |
+
SYSTEM_PROMPT = "You are a helpful assistant that watches a user-provided video and answers questions about it concisely and accurately."
|
| 29 |
+
|
| 30 |
|
| 31 |
+
# ========== Conversation Builder ==========
|
| 32 |
+
def build_conversation(video_path: str, question: str, fps: int):
|
| 33 |
+
return [
|
| 34 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": [
|
| 38 |
+
{"type": "video", "path": video_path},
|
| 39 |
+
{"type": "text", "text": question},
|
| 40 |
+
],
|
| 41 |
+
},
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# ========== Main Inference Function ==========
|
| 46 |
+
@torch.inference_mode()
|
| 47 |
+
def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.9):
|
| 48 |
+
if video is None:
|
| 49 |
+
return "Please upload or drag a video first."
|
| 50 |
+
if not question or question.strip() == "":
|
| 51 |
+
question = "Summarize this video and provide 5 representative question–answer pairs."
|
| 52 |
+
|
| 53 |
+
conv = build_conversation(video, question, int(fps))
|
| 54 |
+
|
| 55 |
+
inputs = processor.apply_chat_template(
|
| 56 |
+
conv,
|
| 57 |
+
fps=int(fps),
|
| 58 |
+
add_generation_prompt=True,
|
| 59 |
+
tokenize=True,
|
| 60 |
+
return_dict=True,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
)
|
| 63 |
+
inputs = {k: v.to(model.device) if hasattr(v, "to") else v for k, v in inputs.items()}
|
| 64 |
+
|
| 65 |
+
gen_kwargs = dict(
|
| 66 |
+
max_new_tokens=int(max_new_tokens),
|
| 67 |
+
temperature=float(temperature),
|
| 68 |
+
top_p=float(top_p),
|
| 69 |
+
do_sample=(float(temperature) > 0),
|
| 70 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 74 |
+
generated_ids = output_ids[0, inputs["input_ids"].shape[1]:]
|
| 75 |
+
text = processor.batch_decode(
|
| 76 |
+
generated_ids.unsqueeze(0),
|
| 77 |
+
skip_special_tokens=True,
|
| 78 |
+
clean_up_tokenization_spaces=True,
|
| 79 |
+
)[0]
|
| 80 |
+
|
| 81 |
+
return text.strip()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# ========== Gradio UI ==========
|
| 85 |
with gr.Blocks(title="Video → Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 86 |
gr.Markdown("""
|
| 87 |
# 🎬 Video → Q&A (Qwen2.5-VL-7B WolfV2)
|
| 88 |
+
- Drag or upload any video, type your question, then click **Ask**.
|
| 89 |
+
- Default `fps=1` (sample 1 frame per second) saves VRAM; for short or detailed videos, increase fps slightly.
|
| 90 |
""")
|
| 91 |
|
| 92 |
+
with gr.Row():
|
| 93 |
+
video = gr.Video(label="Drop your video here (mp4, mov, webm)", interactive=True)
|
| 94 |
+
with gr.Column():
|
| 95 |
+
question = gr.Textbox(label="Your question", placeholder="e.g., What happens in this video? Provide 5 QA pairs.")
|
| 96 |
+
ask = gr.Button("Ask", variant="primary")
|
| 97 |
+
output = gr.Textbox(label="Answer", lines=12)
|
| 98 |
+
|
| 99 |
+
with gr.Accordion("Advanced", open=False):
|
| 100 |
+
fps = gr.Slider(1, 6, value=1, step=1, label="Sampling FPS")
|
| 101 |
+
max_new_tokens = gr.Slider(32, 512, value=192, step=16, label="Max new tokens")
|
| 102 |
+
temperature = gr.Slider(0.0, 1.2, value=0.2, step=0.05, label="Temperature")
|
| 103 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
|
| 104 |
+
|
| 105 |
+
ask.click(
|
| 106 |
+
fn=answer,
|
| 107 |
+
inputs=[video, question, fps, max_new_tokens, temperature, top_p],
|
| 108 |
+
outputs=[output],
|
| 109 |
)
|
| 110 |
|
| 111 |
+
|
| 112 |
+
# ========== App Launch ==========
|
| 113 |
if __name__ == "__main__":
|
| 114 |
+
demo.launch()
|