Spaces:
Sleeping
Sleeping
sunrainyg
commited on
Commit
Β·
3957f9a
1
Parent(s):
4821aa5
Update
Browse files- app.py +73 -21
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -1,35 +1,76 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# ========== Basic Configuration ==========
|
| 7 |
MODEL_ID = os.environ.get("MODEL_ID", "Efficient-Large-Model/qwen2_5vl-7b-wolfv2-tuned")
|
| 8 |
USE_INT4 = os.environ.get("USE_INT4", "0") == "1"
|
| 9 |
|
|
|
|
| 10 |
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 11 |
|
| 12 |
quant_cfg = None
|
| 13 |
-
if USE_INT4:
|
|
|
|
| 14 |
quant_cfg = TorchAoConfig("int4_weight_only", group_size=128)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
MODEL_ID,
|
| 18 |
device_map="auto",
|
| 19 |
-
|
| 20 |
attn_implementation="sdpa",
|
| 21 |
quantization_config=quant_cfg,
|
| 22 |
)
|
| 23 |
|
|
|
|
| 24 |
MIN_PIXELS = 256 * 28 * 28
|
| 25 |
MAX_PIXELS = 1024 * 28 * 28
|
| 26 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# ========== Conversation Builder ==========
|
| 32 |
def build_conversation(video_path: str, question: str, fps: int):
|
|
|
|
|
|
|
|
|
|
| 33 |
return [
|
| 34 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 35 |
{
|
|
@@ -41,10 +82,14 @@ def build_conversation(video_path: str, question: str, fps: int):
|
|
| 41 |
},
|
| 42 |
]
|
| 43 |
|
| 44 |
-
|
| 45 |
-
# ========== Main Inference Function ==========
|
| 46 |
@torch.inference_mode()
|
| 47 |
def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.9):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if video is None:
|
| 49 |
return "Please upload or drag a video first."
|
| 50 |
if not question or question.strip() == "":
|
|
@@ -60,18 +105,22 @@ def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.
|
|
| 60 |
return_dict=True,
|
| 61 |
return_tensors="pt",
|
| 62 |
)
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
gen_kwargs = dict(
|
| 66 |
max_new_tokens=int(max_new_tokens),
|
| 67 |
temperature=float(temperature),
|
| 68 |
top_p=float(top_p),
|
| 69 |
-
do_sample=(float(temperature) > 0),
|
| 70 |
pad_token_id=processor.tokenizer.eos_token_id,
|
| 71 |
)
|
| 72 |
|
| 73 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
text = processor.batch_decode(
|
| 76 |
generated_ids.unsqueeze(0),
|
| 77 |
skip_special_tokens=True,
|
|
@@ -80,19 +129,23 @@ def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.
|
|
| 80 |
|
| 81 |
return text.strip()
|
| 82 |
|
| 83 |
-
|
| 84 |
# ========== Gradio UI ==========
|
| 85 |
with gr.Blocks(title="Video β Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 86 |
-
gr.Markdown(
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
with gr.Row():
|
| 93 |
video = gr.Video(label="Drop your video here (mp4, mov, webm)", interactive=True)
|
| 94 |
with gr.Column():
|
| 95 |
-
question = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 96 |
ask = gr.Button("Ask", variant="primary")
|
| 97 |
output = gr.Textbox(label="Answer", lines=12)
|
| 98 |
|
|
@@ -108,8 +161,7 @@ with gr.Blocks(title="Video β Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
|
| 108 |
outputs=[output],
|
| 109 |
)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
# ========== App Launch ==========
|
| 113 |
if __name__ == "__main__":
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import spaces # for @spaces.GPU on Hugging Face Spaces
|
| 5 |
+
|
| 6 |
+
# Try to import TorchAoConfig for optional 4-bit weight-only quantization.
|
| 7 |
+
# If unavailable in your transformers version, we safely fall back to no quantization.
|
| 8 |
+
try:
|
| 9 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TorchAoConfig
|
| 10 |
+
_HAS_TORCHAO = True
|
| 11 |
+
except Exception:
|
| 12 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
| 13 |
+
TorchAoConfig = None # type: ignore
|
| 14 |
+
_HAS_TORCHAO = False
|
| 15 |
|
| 16 |
# ========== Basic Configuration ==========
|
| 17 |
MODEL_ID = os.environ.get("MODEL_ID", "Efficient-Large-Model/qwen2_5vl-7b-wolfv2-tuned")
|
| 18 |
USE_INT4 = os.environ.get("USE_INT4", "0") == "1"
|
| 19 |
|
| 20 |
+
# Prefer bfloat16 on GPU, float32 on CPU
|
| 21 |
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 22 |
|
| 23 |
quant_cfg = None
|
| 24 |
+
if USE_INT4 and _HAS_TORCHAO and TorchAoConfig is not None:
|
| 25 |
+
# Optional int4 weight-only quantization (saves VRAM on GPU)
|
| 26 |
quant_cfg = TorchAoConfig("int4_weight_only", group_size=128)
|
| 27 |
|
| 28 |
+
# ---- ZeroGPU warm-up: must exist AND be called at import time ----
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def _warmup():
|
| 31 |
+
"""
|
| 32 |
+
A very light GPU-touch to satisfy ZeroGPU's startup detector.
|
| 33 |
+
Called at import-time (below). Never raise; return a short status string.
|
| 34 |
+
"""
|
| 35 |
+
try:
|
| 36 |
+
if torch.cuda.is_available():
|
| 37 |
+
_ = torch.tensor([0], device="cuda")
|
| 38 |
+
return "gpu-ready"
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return f"warmup-error: {e}"
|
| 41 |
+
|
| 42 |
+
# Call warmup at import time so ZeroGPU detects a @spaces.GPU function during startup.
|
| 43 |
+
_WARMUP_STATUS = _warmup()
|
| 44 |
+
|
| 45 |
+
# ========== Load Model & Processor ==========
|
| 46 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 47 |
MODEL_ID,
|
| 48 |
device_map="auto",
|
| 49 |
+
dtype=dtype, # (modern arg; replaces deprecated torch_dtype)
|
| 50 |
attn_implementation="sdpa",
|
| 51 |
quantization_config=quant_cfg,
|
| 52 |
)
|
| 53 |
|
| 54 |
+
# Resolution bounds to balance quality vs. memory
|
| 55 |
MIN_PIXELS = 256 * 28 * 28
|
| 56 |
MAX_PIXELS = 1024 * 28 * 28
|
|
|
|
| 57 |
|
| 58 |
+
processor = AutoProcessor.from_pretrained(
|
| 59 |
+
MODEL_ID,
|
| 60 |
+
min_pixels=MIN_PIXELS,
|
| 61 |
+
max_pixels=MAX_PIXELS,
|
| 62 |
+
)
|
| 63 |
|
| 64 |
+
SYSTEM_PROMPT = (
|
| 65 |
+
"You are a helpful assistant that watches a user-provided video and answers questions "
|
| 66 |
+
"about it concisely and accurately."
|
| 67 |
+
)
|
| 68 |
|
| 69 |
# ========== Conversation Builder ==========
|
| 70 |
def build_conversation(video_path: str, question: str, fps: int):
|
| 71 |
+
"""
|
| 72 |
+
Qwen2.5-VL expects a chat-style list where media and text are items in 'content'.
|
| 73 |
+
"""
|
| 74 |
return [
|
| 75 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 76 |
{
|
|
|
|
| 82 |
},
|
| 83 |
]
|
| 84 |
|
| 85 |
+
# ========== Inference ==========
|
|
|
|
| 86 |
@torch.inference_mode()
|
| 87 |
def answer(video, question, fps=1, max_new_tokens=128, temperature=0.2, top_p=0.9):
|
| 88 |
+
"""
|
| 89 |
+
Main inference entry used by the Gradio UI.
|
| 90 |
+
- video: filepath from gr.Video
|
| 91 |
+
- question: user text; if empty, produce a summary + 5 QA pairs
|
| 92 |
+
"""
|
| 93 |
if video is None:
|
| 94 |
return "Please upload or drag a video first."
|
| 95 |
if not question or question.strip() == "":
|
|
|
|
| 105 |
return_dict=True,
|
| 106 |
return_tensors="pt",
|
| 107 |
)
|
| 108 |
+
# move tensors to model device
|
| 109 |
+
inputs = {k: (v.to(model.device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 110 |
|
| 111 |
gen_kwargs = dict(
|
| 112 |
max_new_tokens=int(max_new_tokens),
|
| 113 |
temperature=float(temperature),
|
| 114 |
top_p=float(top_p),
|
| 115 |
+
do_sample=(float(temperature) > 0.0),
|
| 116 |
pad_token_id=processor.tokenizer.eos_token_id,
|
| 117 |
)
|
| 118 |
|
| 119 |
output_ids = model.generate(**inputs, **gen_kwargs)
|
| 120 |
+
# Remove the prompt portion for clean decoding
|
| 121 |
+
prompt_len = inputs["input_ids"].shape[1]
|
| 122 |
+
generated_ids = output_ids[0, prompt_len:]
|
| 123 |
+
|
| 124 |
text = processor.batch_decode(
|
| 125 |
generated_ids.unsqueeze(0),
|
| 126 |
skip_special_tokens=True,
|
|
|
|
| 129 |
|
| 130 |
return text.strip()
|
| 131 |
|
|
|
|
| 132 |
# ========== Gradio UI ==========
|
| 133 |
with gr.Blocks(title="Video β Q&A (Qwen2.5-VL-7B WolfV2)") as demo:
|
| 134 |
+
gr.Markdown(
|
| 135 |
+
"""
|
| 136 |
+
# π¬ Video β Q&A (Qwen2.5-VL-7B WolfV2)
|
| 137 |
+
- Drag or upload any video, type your question, then click **Ask**.
|
| 138 |
+
- Default `fps=1` (1 frame per second) saves VRAM; for short or very detailed videos, increase fps slightly.
|
| 139 |
+
"""
|
| 140 |
+
)
|
| 141 |
|
| 142 |
with gr.Row():
|
| 143 |
video = gr.Video(label="Drop your video here (mp4, mov, webm)", interactive=True)
|
| 144 |
with gr.Column():
|
| 145 |
+
question = gr.Textbox(
|
| 146 |
+
label="Your question",
|
| 147 |
+
placeholder="e.g., What happens in this video? Provide 5 QA pairs."
|
| 148 |
+
)
|
| 149 |
ask = gr.Button("Ask", variant="primary")
|
| 150 |
output = gr.Textbox(label="Answer", lines=12)
|
| 151 |
|
|
|
|
| 161 |
outputs=[output],
|
| 162 |
)
|
| 163 |
|
| 164 |
+
# ========== Launch ==========
|
|
|
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
# Disable SSR to avoid extra startup constraints; works well across CPU/GPU/ZeroGPU.
|
| 167 |
+
demo.launch(ssr_mode=False)
|
requirements.txt
CHANGED
|
@@ -3,9 +3,10 @@ transformers>=4.50.0
|
|
| 3 |
accelerate>=0.34.0
|
| 4 |
torch>=2.2.0
|
| 5 |
torchvision
|
| 6 |
-
|
| 7 |
-
protobuf
|
| 8 |
av
|
| 9 |
decord
|
|
|
|
| 10 |
pillow
|
| 11 |
numpy
|
|
|
|
|
|
| 3 |
accelerate>=0.34.0
|
| 4 |
torch>=2.2.0
|
| 5 |
torchvision
|
| 6 |
+
spaces
|
|
|
|
| 7 |
av
|
| 8 |
decord
|
| 9 |
+
sentencepiece
|
| 10 |
pillow
|
| 11 |
numpy
|
| 12 |
+
protobuf
|