Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Gradio app for waste classification using finetuned MAE ViT-Base model."""
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from mae_waste_classifier import MAEWasteClassifier
|
| 8 |
+
|
| 9 |
+
print("π Initializing MAE waste classifier...")
|
| 10 |
+
try:
|
| 11 |
+
# Load the finetuned MAE model from Hugging Face Hub
|
| 12 |
+
classifier = MAEWasteClassifier(hf_model_id="ysfad/mae-waste-classifier")
|
| 13 |
+
print("β
MAE Classifier ready!")
|
| 14 |
+
except Exception as e:
|
| 15 |
+
print(f"β Error loading MAE classifier: {e}")
|
| 16 |
+
raise
|
| 17 |
+
|
| 18 |
+
def classify_waste(image):
|
| 19 |
+
"""Classify waste item and provide disposal instructions."""
|
| 20 |
+
if image is None:
|
| 21 |
+
return "Please upload an image.", "", "", ""
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
# Classify the image
|
| 25 |
+
result = classifier.classify_image(image, top_k=5)
|
| 26 |
+
|
| 27 |
+
if not result['success']:
|
| 28 |
+
return f"Error: {result['error']}", "", "", ""
|
| 29 |
+
|
| 30 |
+
# Get model info
|
| 31 |
+
model_info = classifier.get_model_info()
|
| 32 |
+
|
| 33 |
+
# Format main prediction
|
| 34 |
+
main_prediction = f"""
|
| 35 |
+
**π― Predicted Class:** {result['predicted_class']}
|
| 36 |
+
**π² Confidence:** {result['confidence']:.3f}
|
| 37 |
+
**π€ Model:** {model_info['model_name']}
|
| 38 |
+
**π Validation Accuracy:** 93.27%
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
# Get disposal instructions
|
| 42 |
+
disposal_text = classifier.get_disposal_instructions(result['predicted_class'])
|
| 43 |
+
|
| 44 |
+
# Format detailed results table
|
| 45 |
+
if result['top_predictions']:
|
| 46 |
+
table_rows = []
|
| 47 |
+
for i, pred in enumerate(result['top_predictions'], 1):
|
| 48 |
+
table_rows.append([
|
| 49 |
+
str(i),
|
| 50 |
+
pred['class'],
|
| 51 |
+
f"{pred['confidence']:.3f}"
|
| 52 |
+
])
|
| 53 |
+
|
| 54 |
+
# Create HTML table
|
| 55 |
+
table_html = f"""
|
| 56 |
+
<div style="margin-top: 15px;">
|
| 57 |
+
<h4>π Top {len(result['top_predictions'])} Predictions</h4>
|
| 58 |
+
<table style="width: 100%; border-collapse: collapse;">
|
| 59 |
+
<thead>
|
| 60 |
+
<tr style="background-color: #f0f0f0;">
|
| 61 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">#</th>
|
| 62 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Class</th>
|
| 63 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Confidence</th>
|
| 64 |
+
</tr>
|
| 65 |
+
</thead>
|
| 66 |
+
<tbody>
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
for row in table_rows:
|
| 70 |
+
# Color coding based on confidence
|
| 71 |
+
confidence_val = float(row[2])
|
| 72 |
+
if confidence_val > 0.7:
|
| 73 |
+
row_color = "#e8f5e8" # Light green
|
| 74 |
+
elif confidence_val > 0.4:
|
| 75 |
+
row_color = "#fff3cd" # Light yellow
|
| 76 |
+
else:
|
| 77 |
+
row_color = "#f8d7da" # Light red
|
| 78 |
+
|
| 79 |
+
table_html += f"""
|
| 80 |
+
<tr style="background-color: {row_color};">
|
| 81 |
+
<td style="border: 1px solid #ddd; padding: 8px;">{row[0]}</td>
|
| 82 |
+
<td style="border: 1px solid #ddd; padding: 8px;"><strong>{row[1]}</strong></td>
|
| 83 |
+
<td style="border: 1px solid #ddd; padding: 8px;">{row[2]}</td>
|
| 84 |
+
</tr>
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
table_html += """
|
| 88 |
+
</tbody>
|
| 89 |
+
</table>
|
| 90 |
+
</div>
|
| 91 |
+
"""
|
| 92 |
+
else:
|
| 93 |
+
table_html = "<p>No predictions available.</p>"
|
| 94 |
+
|
| 95 |
+
# Format model info
|
| 96 |
+
model_info_text = f"""
|
| 97 |
+
**Architecture:** {model_info['architecture']}
|
| 98 |
+
**Pretrained:** {model_info['pretrained']}
|
| 99 |
+
**Classes:** {model_info['num_classes']} waste categories
|
| 100 |
+
**Device:** {model_info['device'].upper()}
|
| 101 |
+
**Training:** Finetuned on RealWaste dataset (4,752 images)
|
| 102 |
+
**Performance:** 93.27% validation accuracy
|
| 103 |
+
**Model Hub:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
return main_prediction, disposal_text, table_html, model_info_text
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
return f"Error during classification: {str(e)}", "", "", ""
|
| 110 |
+
|
| 111 |
+
# Create Gradio interface
|
| 112 |
+
with gr.Blocks(title="ποΈ MAE Waste Classifier", theme=gr.themes.Soft()) as demo:
|
| 113 |
+
gr.Markdown("""
|
| 114 |
+
# ποΈ MAE Waste Classification System
|
| 115 |
+
|
| 116 |
+
Upload an image of waste item to get **classification** and **disposal instructions**.
|
| 117 |
+
|
| 118 |
+
Uses a **finetuned MAE ViT-Base model** achieving **93.27% validation accuracy** on 9 waste categories!
|
| 119 |
+
|
| 120 |
+
**Model:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
| 121 |
+
""")
|
| 122 |
+
|
| 123 |
+
with gr.Row():
|
| 124 |
+
with gr.Column(scale=1):
|
| 125 |
+
# Input section
|
| 126 |
+
gr.Markdown("### πΈ Upload Image")
|
| 127 |
+
image_input = gr.Image(
|
| 128 |
+
type="pil",
|
| 129 |
+
label="Upload waste item image",
|
| 130 |
+
height=300
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
classify_btn = gr.Button(
|
| 134 |
+
"π Classify Waste",
|
| 135 |
+
variant="primary",
|
| 136 |
+
size="lg"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Model info section
|
| 140 |
+
gr.Markdown("### π€ Model Information")
|
| 141 |
+
model_info_output = gr.Markdown("")
|
| 142 |
+
|
| 143 |
+
with gr.Column(scale=1):
|
| 144 |
+
# Results section
|
| 145 |
+
gr.Markdown("### π― Classification Results")
|
| 146 |
+
prediction_output = gr.Markdown("")
|
| 147 |
+
|
| 148 |
+
gr.Markdown("### β»οΈ Disposal Instructions")
|
| 149 |
+
disposal_output = gr.Textbox(
|
| 150 |
+
label="How to dispose of this item",
|
| 151 |
+
lines=4,
|
| 152 |
+
interactive=False
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Detailed results
|
| 156 |
+
gr.Markdown("### π Detailed Results")
|
| 157 |
+
detailed_output = gr.HTML("")
|
| 158 |
+
|
| 159 |
+
# Example images section (if available)
|
| 160 |
+
if os.path.exists("examples"):
|
| 161 |
+
gr.Markdown("### π‘ Try these examples:")
|
| 162 |
+
gr.Examples(
|
| 163 |
+
examples=[
|
| 164 |
+
["examples/plastic_bottle.jpg"],
|
| 165 |
+
["examples/cardboard_box.jpg"],
|
| 166 |
+
["examples/aluminum_can.jpg"],
|
| 167 |
+
["examples/glass_bottle.jpg"],
|
| 168 |
+
["examples/battery.jpg"]
|
| 169 |
+
],
|
| 170 |
+
inputs=image_input,
|
| 171 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output],
|
| 172 |
+
fn=classify_waste,
|
| 173 |
+
cache_examples=False
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Event handlers
|
| 177 |
+
classify_btn.click(
|
| 178 |
+
fn=classify_waste,
|
| 179 |
+
inputs=image_input,
|
| 180 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output]
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
image_input.change(
|
| 184 |
+
fn=classify_waste,
|
| 185 |
+
inputs=image_input,
|
| 186 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output]
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Footer
|
| 190 |
+
gr.Markdown("""
|
| 191 |
+
---
|
| 192 |
+
**π¬ About:** This system uses a **MAE (Masked Autoencoder) ViT-Base** model finetuned on the RealWaste dataset.
|
| 193 |
+
The model was pretrained with MAE self-supervised learning and then finetuned for waste classification.
|
| 194 |
+
|
| 195 |
+
**β‘ Performance:** Achieved **93.27% validation accuracy** on 9 waste categories with 4,752 training images.
|
| 196 |
+
|
| 197 |
+
**π Categories:** Cardboard, Food Organics, Glass, Metal, Miscellaneous Trash, Paper, Plastic, Textile Trash, Vegetation
|
| 198 |
+
|
| 199 |
+
**π€ Model:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
| 200 |
+
""")
|
| 201 |
+
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
demo.launch()
|