Spaces:
Build error
Build error
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| MAX_MAX_NEW_TOKENS = 8192 | |
| DEFAULT_MAX_NEW_TOKENS = 2048 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # Turkish LLaMA 8B Chat | |
| This Space demonstrates [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, an 8B parameter model fine-tuned for Turkish language understanding and generation. Feel free to play with it, or duplicate to run generations without a queue! | |
| 🔎 This model is the newest and most advanced iteration of CosmosLLama, developed by merging two distinctly trained CosmosLLaMa-Instruct DPO models. | |
| 🤖 The model is optimized for Turkish language tasks and can handle various text generation scenarios including conversations, instructions, and general text completion. | |
| 💡 You can also try the model on the official demo page: [cosmos.yildiz.edu.tr/cosmosllama](https://cosmos.yildiz.edu.tr/cosmosllama) | |
| """ | |
| LICENSE = """ | |
| <p/> | |
| --- | |
| This demo uses [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, | |
| and is governed by the original llama3 license. | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| tokenizer.use_default_system_prompt = False | |
| TERMINATORS = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| system_prompt: str = "", | |
| max_new_tokens: int = 2048, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.0, | |
| ) -> Iterator[str]: | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| conversation += chat_history | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template( | |
| conversation, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ) | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| eos_token_id=TERMINATORS, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| label="System prompt", | |
| lines=6, | |
| value="Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir.", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.0, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Merhaba! Nasılsın?"], | |
| ["Yapay zeka alanında açık kaynak kodun faydaları nelerdir?"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| ) | |
| with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |