Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer,AutoFeatureExtractor | |
| from datasets import load_dataset, Audio | |
| # tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
| # dataset = load_dataset("rotten_tomatoes", split="train") | |
| # print(tokenizer(dataset[0]["text"])) | |
| # def tokenization(example): | |
| # return tokenizer(example["text"]) | |
| # dataset = dataset.map(tokenization, batched=True) | |
| # feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") | |
| # dataset = load_dataset("PolyAI/minds14", "en-US", split="train") | |
| # print(dataset[0]["audio"]) | |
| # dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) | |
| # print(dataset[0]["audio"]) | |
| # def preprocess_function(examples): | |
| # audio_arrays = [x["array"] for x in examples["audio"]] | |
| # inputs = feature_extractor( | |
| # audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True | |
| # ) | |
| # return inputs | |
| # dataset = dataset.map(preprocess_function, batched=True) | |
| feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
| dataset = load_dataset("beans", split="train") | |
| print(dataset[0]["image"]) | |
| from torchvision.transforms import RandomRotation | |
| rotate = RandomRotation(degrees=(0, 90)) | |
| def transforms(examples): | |
| examples["pixel_values"] = [rotate(image.convert("RGB")) for image in examples["image"]] | |
| return examples | |
| dataset.set_transform(transforms) | |
| print(dataset[0]["pixel_values"]) |