Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision.transforms.functional as TF | |
| from imagedream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera | |
| from imagedream.model_zoo import build_model | |
| from imagedream.ldm.models.diffusion.ddim import DDIMSampler | |
| from diffusers import DDIMScheduler | |
| class ImageDream(nn.Module): | |
| def __init__( | |
| self, | |
| device, | |
| model_name='sd-v2.1-base-4view-ipmv', | |
| ckpt_path=None, | |
| t_range=[0.02, 0.98], | |
| ): | |
| super().__init__() | |
| self.device = device | |
| self.model_name = model_name | |
| self.ckpt_path = ckpt_path | |
| self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device) | |
| self.model.device = device | |
| for p in self.model.parameters(): | |
| p.requires_grad_(False) | |
| self.dtype = torch.float32 | |
| self.num_train_timesteps = 1000 | |
| self.min_step = int(self.num_train_timesteps * t_range[0]) | |
| self.max_step = int(self.num_train_timesteps * t_range[1]) | |
| self.image_embeddings = {} | |
| self.embeddings = {} | |
| self.scheduler = DDIMScheduler.from_pretrained( | |
| "stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype | |
| ) | |
| def get_image_text_embeds(self, image, prompts, negative_prompts): | |
| image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) | |
| image_pil = TF.to_pil_image(image[0]) | |
| image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1) # [5, 257, 1280] | |
| self.image_embeddings['pos'] = image_embeddings | |
| self.image_embeddings['neg'] = torch.zeros_like(image_embeddings) | |
| self.image_embeddings['ip_img'] = self.encode_imgs(image) | |
| self.image_embeddings['neg_ip_img'] = torch.zeros_like(self.image_embeddings['ip_img']) | |
| pos_embeds = self.encode_text(prompts).repeat(5,1,1) | |
| neg_embeds = self.encode_text(negative_prompts).repeat(5,1,1) | |
| self.embeddings['pos'] = pos_embeds | |
| self.embeddings['neg'] = neg_embeds | |
| return self.image_embeddings['pos'], self.image_embeddings['neg'], self.image_embeddings['ip_img'], self.image_embeddings['neg_ip_img'], self.embeddings['pos'], self.embeddings['neg'] | |
| def encode_text(self, prompt): | |
| # prompt: [str] | |
| embeddings = self.model.get_learned_conditioning(prompt).to(self.device) | |
| return embeddings | |
| def refine(self, pred_rgb, camera, | |
| guidance_scale=5, steps=50, strength=0.8, | |
| ): | |
| batch_size = pred_rgb.shape[0] | |
| real_batch_size = batch_size // 4 | |
| pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False) | |
| latents = self.encode_imgs(pred_rgb_256.to(self.dtype)) | |
| self.scheduler.set_timesteps(steps) | |
| init_step = int(steps * strength) | |
| latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step]) | |
| camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis) | |
| camera[:, 1] *= -1 | |
| camera = normalize_camera(camera).view(batch_size, 16) | |
| # extra view | |
| camera = camera.view(real_batch_size, 4, 16) | |
| camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16] | |
| camera = camera.view(real_batch_size * 5, 16) | |
| camera = camera.repeat(2, 1) | |
| embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
| image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
| ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0) | |
| context = { | |
| "context": embeddings, | |
| "ip": image_embeddings, | |
| "ip_img": ip_img_embeddings, | |
| "camera": camera, | |
| "num_frames": 4 + 1 | |
| } | |
| for i, t in enumerate(self.scheduler.timesteps[init_step:]): | |
| # extra view | |
| latents = latents.view(real_batch_size, 4, 4, 32, 32) | |
| latents = torch.cat([latents, torch.zeros_like(latents[:, :1])], dim=1).view(-1, 4, 32, 32) | |
| latent_model_input = torch.cat([latents] * 2) | |
| tt = torch.cat([t.unsqueeze(0).repeat(real_batch_size * 5)] * 2).to(self.device) | |
| noise_pred = self.model.apply_model(latent_model_input, tt, context) | |
| noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
| # remove extra view | |
| noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
| noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
| latents = latents.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
| imgs = self.decode_latents(latents) # [1, 3, 512, 512] | |
| return imgs | |
| def train_step( | |
| self, | |
| pred_rgb, # [B, C, H, W] | |
| camera, # [B, 4, 4] | |
| step_ratio=None, | |
| guidance_scale=5, | |
| as_latent=False, | |
| ): | |
| batch_size = pred_rgb.shape[0] | |
| real_batch_size = batch_size // 4 | |
| pred_rgb = pred_rgb.to(self.dtype) | |
| if as_latent: | |
| latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1 | |
| else: | |
| # interp to 256x256 to be fed into vae. | |
| pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False) | |
| # encode image into latents with vae, requires grad! | |
| latents = self.encode_imgs(pred_rgb_256) | |
| if step_ratio is not None: | |
| # dreamtime-like | |
| # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio) | |
| t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step) | |
| t = torch.full((batch_size,), t, dtype=torch.long, device=self.device) | |
| else: | |
| t = torch.randint(self.min_step, self.max_step + 1, (real_batch_size,), dtype=torch.long, device=self.device).repeat(4) | |
| camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis) | |
| camera[:, 1] *= -1 | |
| camera = normalize_camera(camera).view(batch_size, 16) | |
| # extra view | |
| camera = camera.view(real_batch_size, 4, 16) | |
| camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16] | |
| camera = camera.view(real_batch_size * 5, 16) | |
| camera = camera.repeat(2, 1) | |
| embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
| image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
| ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0) | |
| context = { | |
| "context": embeddings, | |
| "ip": image_embeddings, | |
| "ip_img": ip_img_embeddings, | |
| "camera": camera, | |
| "num_frames": 4 + 1 | |
| } | |
| # predict the noise residual with unet, NO grad! | |
| with torch.no_grad(): | |
| # add noise | |
| noise = torch.randn_like(latents) | |
| latents_noisy = self.model.q_sample(latents, t, noise) # [B=4, 4, 32, 32] | |
| # extra view | |
| t = t.view(real_batch_size, 4) | |
| t = torch.cat([t, t[:, :1]], dim=1).view(-1) | |
| latents_noisy = latents_noisy.view(real_batch_size, 4, 4, 32, 32) | |
| latents_noisy = torch.cat([latents_noisy, torch.zeros_like(latents_noisy[:, :1])], dim=1).view(-1, 4, 32, 32) | |
| # pred noise | |
| latent_model_input = torch.cat([latents_noisy] * 2) | |
| tt = torch.cat([t] * 2) | |
| # import kiui | |
| # kiui.lo(latent_model_input, t, context['context'], context['camera']) | |
| noise_pred = self.model.apply_model(latent_model_input, tt, context) | |
| # perform guidance (high scale from paper!) | |
| noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
| # remove extra view | |
| noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
| noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| grad = (noise_pred - noise) | |
| grad = torch.nan_to_num(grad) | |
| target = (latents - grad).detach() | |
| loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0] | |
| return loss | |
| def decode_latents(self, latents): | |
| imgs = self.model.decode_first_stage(latents) | |
| imgs = ((imgs + 1) / 2).clamp(0, 1) | |
| return imgs | |
| def encode_imgs(self, imgs): | |
| # imgs: [B, 3, 256, 256] | |
| imgs = 2 * imgs - 1 | |
| latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs)) | |
| return latents # [B, 4, 32, 32] | |
| def prompt_to_img( | |
| self, | |
| image, | |
| prompts, | |
| negative_prompts="", | |
| height=256, | |
| width=256, | |
| num_inference_steps=50, | |
| guidance_scale=5.0, | |
| latents=None, | |
| elevation=0, | |
| azimuth_start=0, | |
| ): | |
| if isinstance(prompts, str): | |
| prompts = [prompts] | |
| if isinstance(negative_prompts, str): | |
| negative_prompts = [negative_prompts] | |
| real_batch_size = len(prompts) | |
| batch_size = len(prompts) * 5 | |
| # Text embeds -> img latents | |
| sampler = DDIMSampler(self.model) | |
| shape = [4, height // 8, width // 8] | |
| c_ = {"context": self.encode_text(prompts).repeat(5,1,1)} | |
| uc_ = {"context": self.encode_text(negative_prompts).repeat(5,1,1)} | |
| # image embeddings | |
| image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) | |
| image_pil = TF.to_pil_image(image[0]) | |
| image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1).to(self.device) | |
| c_["ip"] = image_embeddings | |
| uc_["ip"] = torch.zeros_like(image_embeddings) | |
| ip_img = self.encode_imgs(image) | |
| c_["ip_img"] = ip_img | |
| uc_["ip_img"] = torch.zeros_like(ip_img) | |
| camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start, extra_view=True) | |
| camera = camera.repeat(real_batch_size, 1).to(self.device) | |
| c_["camera"] = uc_["camera"] = camera | |
| c_["num_frames"] = uc_["num_frames"] = 5 | |
| kiui.lo(image_embeddings, ip_img, camera) | |
| latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_, | |
| batch_size=batch_size, shape=shape, | |
| verbose=False, | |
| unconditional_guidance_scale=guidance_scale, | |
| unconditional_conditioning=uc_, | |
| eta=0, x_T=None) | |
| # Img latents -> imgs | |
| imgs = self.decode_latents(latents) # [4, 3, 256, 256] | |
| kiui.lo(latents, imgs) | |
| # Img to Numpy | |
| imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy() | |
| imgs = (imgs * 255).round().astype("uint8") | |
| return imgs | |
| if __name__ == "__main__": | |
| import argparse | |
| import matplotlib.pyplot as plt | |
| import kiui | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("image", type=str) | |
| parser.add_argument("prompt", type=str) | |
| parser.add_argument("--negative", default="", type=str) | |
| parser.add_argument("--steps", type=int, default=30) | |
| opt = parser.parse_args() | |
| device = torch.device("cuda") | |
| sd = ImageDream(device) | |
| image = kiui.read_image(opt.image, mode='tensor') | |
| image = image.permute(2, 0, 1).unsqueeze(0).to(device) | |
| while True: | |
| imgs = sd.prompt_to_img(image, opt.prompt, opt.negative, num_inference_steps=opt.steps) | |
| grid = np.concatenate([ | |
| np.concatenate([imgs[0], imgs[1]], axis=1), | |
| np.concatenate([imgs[2], imgs[3]], axis=1), | |
| ], axis=0) | |
| # visualize image | |
| plt.imshow(grid) | |
| plt.show() |