Adapt to streaming interface (only when num_beams is equal to 1)
Browse files- app.py +30 -3
- generator.py +14 -12
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import psutil
|
|
| 4 |
import streamlit as st
|
| 5 |
import torch
|
| 6 |
from langdetect import detect
|
|
|
|
| 7 |
|
| 8 |
from default_texts import default_texts
|
| 9 |
from generator import GeneratorFactory
|
|
@@ -60,6 +61,20 @@ GENERATOR_LIST = [
|
|
| 60 |
]
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def main():
|
| 64 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
| 65 |
page_title="Rosetta en/nl", # String or None. Strings get appended with "โข Streamlit".
|
|
@@ -132,16 +147,28 @@ and the [Huggingface text generation interface doc](https://huggingface.co/trans
|
|
| 132 |
left.error("Num beams should be a multiple of num beam groups")
|
| 133 |
return
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
for generator in generators.filter(task=task):
|
| 136 |
-
right.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
time_start = time.time()
|
| 138 |
result, params_used = generator.generate(
|
| 139 |
-
text=st.session_state.text, **params
|
| 140 |
)
|
| 141 |
time_end = time.time()
|
| 142 |
time_diff = time_end - time_start
|
| 143 |
|
| 144 |
-
|
|
|
|
| 145 |
text_line = ", ".join([f"{k}={v}" for k, v in params_used.items()])
|
| 146 |
right.markdown(f" ๐ *generated in {time_diff:.2f}s, `{text_line}`*")
|
| 147 |
|
|
|
|
| 4 |
import streamlit as st
|
| 5 |
import torch
|
| 6 |
from langdetect import detect
|
| 7 |
+
from transformers import TextIteratorStreamer
|
| 8 |
|
| 9 |
from default_texts import default_texts
|
| 10 |
from generator import GeneratorFactory
|
|
|
|
| 61 |
]
|
| 62 |
|
| 63 |
|
| 64 |
+
class StreamlitTextIteratorStreamer(TextIteratorStreamer):
|
| 65 |
+
def __init__(
|
| 66 |
+
self, output_placeholder, tokenizer, skip_prompt=False, **decode_kwargs
|
| 67 |
+
):
|
| 68 |
+
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
| 69 |
+
self.output_placeholder = output_placeholder
|
| 70 |
+
self.output_text = ""
|
| 71 |
+
|
| 72 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
| 73 |
+
self.output_text += text
|
| 74 |
+
self.output_placeholder.markdown(self.output_text, unsafe_allow_html=True)
|
| 75 |
+
super().on_finalized_text(text, stream_end)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def main():
|
| 79 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
| 80 |
page_title="Rosetta en/nl", # String or None. Strings get appended with "โข Streamlit".
|
|
|
|
| 147 |
left.error("Num beams should be a multiple of num beam groups")
|
| 148 |
return
|
| 149 |
|
| 150 |
+
streaming_enabled = num_beams == 1
|
| 151 |
+
if not streaming_enabled:
|
| 152 |
+
left.markdown("*`num_beams > 1` so streaming is disabled*")
|
| 153 |
+
|
| 154 |
for generator in generators.filter(task=task):
|
| 155 |
+
model_container = right.container()
|
| 156 |
+
model_container.markdown(f"๐งฎ **Model `{generator}`**")
|
| 157 |
+
output_placeholder = model_container.empty()
|
| 158 |
+
streamer = (
|
| 159 |
+
StreamlitTextIteratorStreamer(output_placeholder, generator.tokenizer)
|
| 160 |
+
if streaming_enabled
|
| 161 |
+
else None
|
| 162 |
+
)
|
| 163 |
time_start = time.time()
|
| 164 |
result, params_used = generator.generate(
|
| 165 |
+
text=st.session_state.text, streamer=streamer, **params
|
| 166 |
)
|
| 167 |
time_end = time.time()
|
| 168 |
time_diff = time_end - time_start
|
| 169 |
|
| 170 |
+
if not streaming_enabled:
|
| 171 |
+
right.write(result.replace("\n", " \n"))
|
| 172 |
text_line = ", ".join([f"{k}={v}" for k, v in params_used.items()])
|
| 173 |
right.markdown(f" ๐ *generated in {time_diff:.2f}s, `{text_line}`*")
|
| 174 |
|
generator.py
CHANGED
|
@@ -20,7 +20,7 @@ def get_access_token():
|
|
| 20 |
|
| 21 |
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
| 22 |
def load_model(model_name):
|
| 23 |
-
os.environ
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 25 |
model_name,
|
| 26 |
from_flax=True,
|
|
@@ -30,19 +30,18 @@ def load_model(model_name):
|
|
| 30 |
if tokenizer.pad_token is None:
|
| 31 |
print("Adding pad_token to the tokenizer")
|
| 32 |
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
-
|
| 34 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 35 |
-
model_name, use_auth_token=get_access_token()
|
| 36 |
-
)
|
| 37 |
-
except EnvironmentError:
|
| 38 |
try:
|
| 39 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 40 |
-
model_name,
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
|
|
|
| 42 |
except EnvironmentError:
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
)
|
| 46 |
if device != -1:
|
| 47 |
model.to(f"cuda:{device}")
|
| 48 |
return tokenizer, model
|
|
@@ -89,7 +88,7 @@ class Generator:
|
|
| 89 |
except TypeError:
|
| 90 |
pass
|
| 91 |
|
| 92 |
-
def generate(self, text: str, **generate_kwargs) -> (str, dict):
|
| 93 |
# Replace two or more newlines with a single newline in text
|
| 94 |
text = re.sub(r"\n{2,}", "\n", text)
|
| 95 |
|
|
@@ -98,7 +97,9 @@ class Generator:
|
|
| 98 |
# if there are newlines in the text, and the model needs line-splitting, split the text and recurse
|
| 99 |
if re.search(r"\n", text) and self.split_sentences:
|
| 100 |
lines = text.splitlines()
|
| 101 |
-
translated = [
|
|
|
|
|
|
|
| 102 |
return "\n".join(translated), generate_kwargs
|
| 103 |
|
| 104 |
# if self.tokenizer has a newline_token attribute, replace \n with it
|
|
@@ -117,6 +118,7 @@ class Generator:
|
|
| 117 |
logits = self.model.generate(
|
| 118 |
batch_encoded["input_ids"],
|
| 119 |
attention_mask=batch_encoded["attention_mask"],
|
|
|
|
| 120 |
**generate_kwargs,
|
| 121 |
)
|
| 122 |
decoded_preds = self.tokenizer.batch_decode(
|
|
|
|
| 20 |
|
| 21 |
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
| 22 |
def load_model(model_name):
|
| 23 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 25 |
model_name,
|
| 26 |
from_flax=True,
|
|
|
|
| 30 |
if tokenizer.pad_token is None:
|
| 31 |
print("Adding pad_token to the tokenizer")
|
| 32 |
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
+
for framework in [None, "flax", "tf"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
try:
|
| 35 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 36 |
+
model_name,
|
| 37 |
+
from_flax=(framework == "flax"),
|
| 38 |
+
from_tf=(framework == "tf"),
|
| 39 |
+
use_auth_token=get_access_token(),
|
| 40 |
)
|
| 41 |
+
break
|
| 42 |
except EnvironmentError:
|
| 43 |
+
if framework == "tf":
|
| 44 |
+
raise
|
|
|
|
| 45 |
if device != -1:
|
| 46 |
model.to(f"cuda:{device}")
|
| 47 |
return tokenizer, model
|
|
|
|
| 88 |
except TypeError:
|
| 89 |
pass
|
| 90 |
|
| 91 |
+
def generate(self, text: str, streamer=None, **generate_kwargs) -> (str, dict):
|
| 92 |
# Replace two or more newlines with a single newline in text
|
| 93 |
text = re.sub(r"\n{2,}", "\n", text)
|
| 94 |
|
|
|
|
| 97 |
# if there are newlines in the text, and the model needs line-splitting, split the text and recurse
|
| 98 |
if re.search(r"\n", text) and self.split_sentences:
|
| 99 |
lines = text.splitlines()
|
| 100 |
+
translated = [
|
| 101 |
+
self.generate(line, streamer, **generate_kwargs)[0] for line in lines
|
| 102 |
+
]
|
| 103 |
return "\n".join(translated), generate_kwargs
|
| 104 |
|
| 105 |
# if self.tokenizer has a newline_token attribute, replace \n with it
|
|
|
|
| 118 |
logits = self.model.generate(
|
| 119 |
batch_encoded["input_ids"],
|
| 120 |
attention_mask=batch_encoded["attention_mask"],
|
| 121 |
+
streamer=streamer,
|
| 122 |
**generate_kwargs,
|
| 123 |
)
|
| 124 |
decoded_preds = self.tokenizer.batch_decode(
|
requirements.txt
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
protobuf<3.20
|
| 5 |
streamlit>=1.4.0,<=1.10.0
|
| 6 |
torch
|
| 7 |
-
transformers
|
| 8 |
langdetect
|
| 9 |
psutil
|
| 10 |
jax[cuda]==0.3.16
|
|
|
|
| 4 |
protobuf<3.20
|
| 5 |
streamlit>=1.4.0,<=1.10.0
|
| 6 |
torch
|
| 7 |
+
git+https://github.com/huggingface/transformers.git@1905384fd576acf4b645a8216907f980b4788d9b
|
| 8 |
langdetect
|
| 9 |
psutil
|
| 10 |
jax[cuda]==0.3.16
|