Spaces:
Running
Running
File size: 38,749 Bytes
5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 8913f77 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 8913f77 7da164e 2ac1fd8 8913f77 2ac1fd8 8913f77 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 9b4ad2b 5f0cfa7 9b4ad2b 7da164e 9b4ad2b 5f0cfa7 7da164e 5f0cfa7 9b4ad2b 8913f77 2ac1fd8 8913f77 2ac1fd8 8913f77 2ac1fd8 8913f77 5f0cfa7 7da164e 8913f77 7da164e 8913f77 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 8913f77 7da164e 8913f77 7da164e 8913f77 5f0cfa7 7da164e 8913f77 7da164e 8913f77 7da164e 8913f77 2ac1fd8 8913f77 2ac1fd8 8913f77 7da164e 8913f77 7da164e 8913f77 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 9bf19c4 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 5f0cfa7 7da164e 9bf19c4 8913f77 2ac1fd8 9b4ad2b 2ac1fd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
"""
Keywords Rankings Module for SEO Report Generator
Implements PRD requirements with Competitors Ranking Keywords API and Google Keyword Insight API
"""
import os
import requests
import json
import time
import hashlib
from typing import Dict, Any, List, Optional, Tuple
from urllib.parse import urlparse
from datetime import datetime, timedelta
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor, as_completed
from utils import safe_pct, as_int
@dataclass
class ModuleResult:
"""Standard result object for SEO modules"""
success: bool
data: Dict[str, Any]
error: str = None
class KeywordsModule:
def __init__(self):
# API Configuration
self.rapidapi_key = os.getenv('RAPIDAPI_KEY')
# RapidAPI endpoints
self.enrichment_api_host = "google-keyword-insight1.p.rapidapi.com"
self.similarweb_url = "https://similarweb-traffic.p.rapidapi.com/traffic"
# API priority order (tries in this order)
self.api_sources = [
{'name': 'SimilarWeb', 'available': bool(self.rapidapi_key)}, # Primary: SimilarWeb Traffic
{'name': 'GoogleInsight', 'available': bool(self.rapidapi_key)}, # Fallback: Google Keyword Insight
]
# Performance Configuration
self.timeout = int(os.getenv('KEYWORD_API_TIMEOUT', 30))
self.max_retries = int(os.getenv('KEYWORD_MAX_RETRIES', 3))
self.pagination_limit = int(os.getenv('KEYWORD_PAGINATION_LIMIT', 1000))
self.enrichment_batch_size = int(os.getenv('ENRICHMENT_BATCH_SIZE', 50))
self.enrichment_cache_ttl = int(os.getenv('ENRICHMENT_CACHE_TTL', 86400))
# Rate limiting
self.primary_api_calls = 0
self.enrichment_api_calls = 0
self.last_primary_call = 0
self.last_enrichment_call = 0
# In-memory cache for enrichment data
self.enrichment_cache = {}
self.cache_timestamps = {}
def analyze(self, url: str, competitor_domains: List[str] = None, quick_scan: bool = False) -> ModuleResult:
"""
Analyze keyword rankings for the given URL and competitors
Args:
url: Target website URL
competitor_domains: List of competitor domains to analyze
quick_scan: If True, limit to 1000 keywords per domain
Returns:
ModuleResult with comprehensive keywords data
"""
start_time = time.time()
try:
domain = self._extract_domain(url)
competitor_domains = competitor_domains or []
# Limit competitors for demo performance
if len(competitor_domains) > 3:
competitor_domains = competitor_domains[:3]
# Call ALL APIs and combine real + mock data
main_domain_data = self._fetch_from_all_apis(domain, quick_scan)
# Fetch competitor data using same ALL APIs approach
competitor_data = {}
for comp_domain in competitor_domains:
comp_result = self._fetch_from_all_apis(comp_domain, quick_scan)
competitor_data[comp_domain] = comp_result['data']
# Process and enrich data
result_data = self._process_keywords_data(
main_domain_data['data'],
competitor_data,
domain,
competitor_domains
)
# Add metadata
processing_time = time.time() - start_time
result_data['meta'] = {
'last_updated': datetime.now().isoformat(),
'processing_time': round(processing_time, 2),
'locale': 'en-US'
}
return ModuleResult(success=True, data=result_data)
except Exception as e:
return ModuleResult(
success=False,
data={},
error=f"Keywords analysis failed: {str(e)}"
)
def _extract_domain(self, url: str) -> str:
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
return urlparse(url).netloc.replace('www.', '')
def _fetch_from_all_apis(self, domain: str, quick_scan: bool) -> Dict[str, Any]:
"""Call ALL APIs and combine real data + mock data for failures"""
api_results = {}
failed_apis = []
if not self.rapidapi_key:
failed_apis.extend(['SimilarWeb', 'GoogleInsight'])
print("❌ No RAPIDAPI_KEY - using mock data for all keyword APIs")
else:
# Try SimilarWeb
try:
print("🔄 Trying SimilarWeb Traffic API...")
similarweb_result = self._fetch_domain_keywords_similarweb(domain, quick_scan)
if similarweb_result['success']:
api_results['SimilarWeb'] = similarweb_result['data']
print("✅ SimilarWeb Traffic API - SUCCESS")
else:
failed_apis.append('SimilarWeb')
print(f"❌ SimilarWeb Traffic API - FAILED: {similarweb_result.get('error', 'Unknown error')}")
except Exception as e:
failed_apis.append('SimilarWeb')
print(f"❌ SimilarWeb Traffic API - FAILED: {str(e)}")
# Try Google Keyword Insight
try:
print("🔄 Trying Google Keyword Insight API...")
google_result = self._fetch_keywords_enrichment_only(domain, quick_scan)
if google_result['success']:
api_results['GoogleInsight'] = google_result['data']
print("✅ Google Keyword Insight API - SUCCESS")
else:
failed_apis.append('GoogleInsight')
print(f"❌ Google Keyword Insight API - FAILED: {google_result.get('error', 'Unknown error')}")
except Exception as e:
failed_apis.append('GoogleInsight')
print(f"❌ Google Keyword Insight API - FAILED: {str(e)}")
# Combine all successful API data + generate mock for failures
combined_data = self._combine_all_keyword_apis(domain, api_results, failed_apis)
return {
'success': True,
'data': combined_data,
'failed_apis': failed_apis
}
def _combine_all_keyword_apis(self, domain: str, api_results: Dict, failed_apis: List[str]) -> Dict[str, Any]:
"""Combine real API data with mock data for failures"""
# Start with the best available real data
if 'SimilarWeb' in api_results:
base_data = api_results['SimilarWeb']
primary_source = 'SimilarWeb Traffic API'
elif 'GoogleInsight' in api_results:
base_data = api_results['GoogleInsight']
primary_source = 'Google Keyword Insight API'
else:
# All APIs failed - use mock data
base_data = self._generate_mock_domain_data(domain)
primary_source = 'Mock data (all APIs failed)'
# Add error tracking for failed APIs
failed_api_messages = []
for api in failed_apis:
if api == 'SimilarWeb':
failed_api_messages.append("❌ SimilarWeb Traffic API failed - using mock data")
elif api == 'GoogleInsight':
failed_api_messages.append("❌ Google Keyword Insight API failed - using mock data")
# Combine with additional data from other working APIs if available
if len(api_results) > 1:
# If we have multiple API sources working, we can enrich the data
combined_keywords = base_data['keywords']
# Add traffic data from SimilarWeb if available
if 'SimilarWeb' in api_results and 'traffic_data' in api_results['SimilarWeb']:
base_data['traffic_data'] = api_results['SimilarWeb']['traffic_data']
# Mark which parts are real vs mock
base_data['api_status'] = {
'working_apis': list(api_results.keys()),
'failed_apis': failed_apis,
'failed_messages': failed_api_messages,
'primary_source': primary_source
}
return base_data
def _fetch_domain_keywords_multi_api(self, domain: str, quick_scan: bool) -> Dict[str, Any]:
"""Try multiple API sources in order of preference"""
available_apis = [api for api in self.api_sources if api['available']]
if not available_apis:
print("No keyword APIs configured")
return {'success': False, 'error': 'No RAPIDAPI_KEY configured'}
for api_source in available_apis:
try:
print(f"Trying {api_source['name']} for keyword data...")
if api_source['name'] == 'SimilarWeb':
result = self._fetch_domain_keywords_similarweb(domain, quick_scan)
elif api_source['name'] == 'GoogleInsight':
result = self._fetch_keywords_enrichment_only(domain, quick_scan)
else:
continue
# Track which API source was successfully used
if result.get('success'):
self._current_api_source = api_source['name']
print(f"✅ Successfully using {api_source['name']} for keywords")
return result
except Exception as e:
print(f"{api_source['name']} failed: {str(e)}")
continue
print("All APIs failed")
return {'success': False, 'error': 'All keyword APIs failed'}
def _calculate_domain_statistics(self, keywords: List[Dict]) -> Dict[str, Any]:
total_keywords = len(keywords)
# Position distribution
pos_1 = sum(1 for k in keywords if k.get('rank', 100) == 1)
pos_2_3 = sum(1 for k in keywords if 2 <= k.get('rank', 100) <= 3)
pos_4_10 = sum(1 for k in keywords if 4 <= k.get('rank', 100) <= 10)
pos_11_20 = sum(1 for k in keywords if 11 <= k.get('rank', 100) <= 20)
pos_21_50 = sum(1 for k in keywords if 21 <= k.get('rank', 100) <= 50)
# Movement tracking
new_keywords = sum(1 for k in keywords if k.get('previous_rank') is None)
up_keywords = sum(1 for k in keywords if k.get('rank', 100) < k.get('previous_rank', 100))
down_keywords = sum(1 for k in keywords if k.get('rank', 100) > k.get('previous_rank', 100))
# Traffic estimation
estimated_traffic = sum(k.get('estimated_traffic_volume', 0) for k in keywords)
return {
'organic': {
'keywords_in_pos_1': pos_1,
'keywords_in_pos_2_3': pos_2_3,
'keywords_in_pos_4_10': pos_4_10,
'keywords_in_pos_11_20': pos_11_20,
'keywords_in_pos_21_50': pos_21_50,
'total_keywords_count': total_keywords,
'Estimated_traffic_volume': estimated_traffic,
'is_new': new_keywords,
'is_up': up_keywords,
'is_down': down_keywords,
'is_lost': 0
}
}
def _process_keywords_data(self, main_data: Dict, competitor_data: Dict,
domain: str, competitor_domains: List[str]) -> Dict[str, Any]:
stats = main_data['statistics']['organic']
keywords = main_data['keywords']
# Calculate totals
totals = {
'keywords': stats['total_keywords_count'],
'estimated_traffic': stats['Estimated_traffic_volume']
}
# Calculate position distribution (corrected Top-50 logic)
top3 = stats['keywords_in_pos_1'] + stats['keywords_in_pos_2_3']
top10 = top3 + stats['keywords_in_pos_4_10']
p11_20 = stats['keywords_in_pos_11_20']
p21_50 = sum(1 for k in keywords if 21 <= k.get('rank', 100) <= 50)
top50 = top10 + p11_20 + p21_50
distribution = {
'top3': top3,
'top10': top10,
'top50': top50,
'percentages': {
'top3': safe_pct(top3, stats['total_keywords_count']),
'top10': safe_pct(top10, stats['total_keywords_count']),
'top50': safe_pct(top50, stats['total_keywords_count'])
}
}
# Movement tracking
movement = {
'new': stats['is_new'],
'up': stats['is_up'],
'down': stats['is_down'],
'lost': stats['is_lost']
}
# Identify best keywords
best_keywords = self._identify_best_keywords(keywords)
# Identify declining keywords
declining_keywords = self._identify_declining_keywords(keywords)
# Identify worst performing keywords
worst_keywords = self._identify_worst_keywords(keywords)
# Competitor gap analysis
opportunities, competitor_summary = self._analyze_competitor_gaps(
keywords, competitor_data, domain, competitor_domains
)
# Enrich keywords with volume/CPC data
enriched_keywords = self._enrich_keywords_data(keywords)
# Data sources tracking
data_sources = {
'positions': 'Competitors Ranking Keywords API',
'volume': 'Google Keyword Insight API',
'enrichment_rate': self._calculate_enrichment_rate(enriched_keywords)
}
# Set data source label based on what was actually used
if hasattr(self, '_current_api_source'):
if self._current_api_source == 'SimilarWeb':
data_source = 'SimilarWeb Traffic API'
elif self._current_api_source == 'GoogleInsight':
data_source = 'Google Keyword Insight API (rankings estimated)'
else:
data_source = f'{self._current_api_source} API'
else:
data_source = 'Real API data unavailable'
return {
'totals': totals,
'distribution': distribution,
'movement': movement,
'best_keywords': best_keywords,
'declining_keywords': declining_keywords,
'worst_keywords': worst_keywords,
'opportunities': opportunities,
'competitor_summary': competitor_summary,
'data_sources': data_sources,
'data_source': data_source
}
def _identify_best_keywords(self, keywords: List[Dict]) -> List[Dict]:
best_candidates = [
k for k in keywords
if k.get('rank', 100) <= 3 and k.get('estimated_traffic_volume', 0) > 10
]
# Sort by estimated traffic volume
best_candidates.sort(key=lambda x: x.get('estimated_traffic_volume', 0), reverse=True)
return [
{
'keyword': k.get('keyword', ''),
'rank': k.get('rank', 0),
'url': k.get('url', ''),
'volume': k.get('avg_search_volume', 0),
'estimated_traffic': k.get('estimated_traffic_volume', 0),
'trend': self._determine_trend(k)
}
for k in best_candidates[:15]
]
def _identify_declining_keywords(self, keywords: List[Dict]) -> List[Dict]:
declining_candidates = []
for k in keywords:
current_rank = k.get('rank', 100)
previous_rank = k.get('previous_rank', 100)
if current_rank > previous_rank and (current_rank - previous_rank) >= 5:
declining_candidates.append({
'keyword': k.get('keyword', ''),
'rank': current_rank,
'previous_rank': previous_rank,
'rank_delta': current_rank - previous_rank,
'volume': k.get('avg_search_volume', 0)
})
# Sort by rank delta (biggest drops first)
declining_candidates.sort(key=lambda x: x['rank_delta'], reverse=True)
return declining_candidates[:15]
def _analyze_competitor_gaps(self, main_keywords: List[Dict], competitor_data: Dict,
domain: str, competitor_domains: List[str]) -> Tuple[List[Dict], List[Dict]]:
opportunities = []
competitor_summary = []
# Normalize main domain keywords
main_keyword_set = {k.get('keyword', '').lower().strip() for k in main_keywords}
for comp_domain, comp_data in competitor_data.items():
comp_keywords = comp_data.get('keywords', [])
comp_stats = comp_data.get('statistics', {}).get('organic', {})
# Find gaps
gaps = []
for k in comp_keywords:
keyword = k.get('keyword', '').lower().strip()
comp_rank = k.get('rank', 100)
# Keyword where competitor ranks well but main domain doesn't
if keyword not in main_keyword_set and comp_rank <= 20:
gaps.append({
'keyword': k.get('keyword', ''),
'competitor_rank': comp_rank,
'competitor_domain': comp_domain,
'volume': k.get('avg_search_volume', 0),
'difficulty': self._estimate_difficulty(comp_rank, k.get('avg_search_volume', 0))
})
# Calculate opportunity scores
for gap in gaps:
score = self._calculate_opportunity_score(
gap['competitor_rank'],
gap['volume'],
gap['difficulty']
)
gap['priority_score'] = score
# Sort by priority score
gaps.sort(key=lambda x: x['priority_score'], reverse=True)
opportunities.extend(gaps[:20]) # Top 20 per competitor
# Competitor summary
overlapping = len([k for k in comp_keywords if k.get('keyword', '').lower().strip() in main_keyword_set])
competitor_summary.append({
'domain': comp_domain,
'total_keywords': comp_stats.get('total_keywords_count', 0),
'overlapping_keywords': overlapping,
'gaps_identified': len(gaps)
})
# Sort all opportunities by priority score
opportunities.sort(key=lambda x: x['priority_score'], reverse=True)
return opportunities[:50], competitor_summary
def _calculate_opportunity_score(self, competitor_rank: int, search_volume: int, difficulty: int) -> float:
position_ctr = {1: 28, 2: 15, 3: 11, 4: 8, 5: 7, 10: 2, 20: 1}
# Find closest CTR value
ctr_value = 1
for pos, ctr in position_ctr.items():
if competitor_rank <= pos:
ctr_value = ctr
break
traffic_potential = ctr_value * search_volume / 100
competition_factor = max(competitor_rank, 1)
difficulty_factor = max(difficulty, 10) / 100
score = traffic_potential / (competition_factor * difficulty_factor)
return min(round(score, 1), 100)
def _estimate_difficulty(self, rank: int, volume: int) -> int:
# Simple heuristic - in practice, this would come from a keyword difficulty API
if rank <= 3:
return 20 + (volume // 1000) * 5
elif rank <= 10:
return 35 + (volume // 1000) * 3
else:
return 50 + (volume // 1000) * 2
def _enrich_keywords_data(self, keywords: List[Dict]) -> List[Dict]:
# Identify keywords needing enrichment
keywords_to_enrich = [
k for k in keywords
if not k.get('avg_search_volume') or k.get('avg_search_volume', 0) == 0
]
if not keywords_to_enrich:
return keywords
# Batch enrichment
enriched_data = self._batch_enrich_keywords(
[k.get('keyword', '') for k in keywords_to_enrich]
)
# Merge enriched data back
enriched_keywords = keywords.copy()
for i, keyword_data in enumerate(keywords_to_enrich):
keyword = keyword_data.get('keyword', '')
if keyword in enriched_data:
# Find the keyword in the original list and update it
for j, k in enumerate(enriched_keywords):
if k.get('keyword', '') == keyword:
enriched_keywords[j].update(enriched_data[keyword])
break
return enriched_keywords
def _batch_enrich_keywords(self, keywords: List[str]) -> Dict[str, Dict]:
enriched_data = {}
# Process in batches
for i in range(0, len(keywords), self.enrichment_batch_size):
batch = keywords[i:i + self.enrichment_batch_size]
# Check cache first
uncached_keywords = []
for keyword in batch:
cache_key = self._get_cache_key(keyword)
if cache_key in self.enrichment_cache:
cache_age = time.time() - self.cache_timestamps.get(cache_key, 0)
if cache_age < self.enrichment_cache_ttl:
enriched_data[keyword] = self.enrichment_cache[cache_key]
else:
uncached_keywords.append(keyword)
else:
uncached_keywords.append(keyword)
if not uncached_keywords:
continue
# Enrich uncached keywords
try:
self._rate_limit_enrichment_api()
url = "https://google-keyword-insight1.p.rapidapi.com/globalkey/"
headers = {
"x-rapidapi-key": self.rapidapi_key,
"x-rapidapi-host": self.enrichment_api_host
}
for keyword in uncached_keywords:
params = {
"keyword": keyword,
"lang": "en"
}
response = requests.get(url, headers=headers, params=params, timeout=self.timeout)
self.enrichment_api_calls += 1
self.last_enrichment_call = time.time()
if response.status_code == 200:
data = response.json()
if data and isinstance(data, list) and len(data) > 0:
insight = data[0]
enriched_info = {
'avg_search_volume': insight.get('volume', 0),
'cpc_low': insight.get('low_bid', 0),
'cpc_high': insight.get('high_bid', 0),
'competition_level': insight.get('competition_level', 'UNKNOWN'),
'trend': insight.get('trend', 0)
}
enriched_data[keyword] = enriched_info
# Cache the result
cache_key = self._get_cache_key(keyword)
self.enrichment_cache[cache_key] = enriched_info
self.cache_timestamps[cache_key] = time.time()
# Small delay to respect rate limits
time.sleep(0.1)
except Exception as e:
# Continue processing even if enrichment fails
print(f"Enrichment error: {e}")
continue
return enriched_data
def _get_cache_key(self, keyword: str) -> str:
return hashlib.md5(keyword.lower().encode()).hexdigest()
def _calculate_enrichment_rate(self, keywords: List[Dict]) -> float:
enriched = sum(1 for k in keywords if k.get('avg_search_volume', 0) > 0)
total = len(keywords)
return round(enriched / total * 100, 1) if total > 0 else 0
def _determine_trend(self, keyword_data: Dict) -> str:
current_rank = keyword_data.get('rank', 100)
previous_rank = keyword_data.get('previous_rank', 100)
if previous_rank is None:
return 'new'
elif current_rank < previous_rank:
return 'up'
elif current_rank > previous_rank:
return 'down'
else:
return 'stable'
def _rate_limit_enrichment_api(self):
current_time = time.time()
if current_time - self.last_enrichment_call < 0.6:
time.sleep(0.6)
def _identify_worst_keywords(self, keywords: List[Dict]) -> Dict[str, List[Dict]]:
"""Identify worst performing keywords by CTR and position"""
IMP_MIN = 500
CTR_MIN = 1.0
# Filter for keywords with sufficient data
keywords_with_data = [
k for k in keywords
if k.get('estimated_traffic_volume', 0) >= IMP_MIN
]
# Worst by CTR (simulated - high impressions, low traffic suggests low CTR)
worst_by_ctr = []
for k in keywords_with_data:
impressions = k.get('avg_search_volume', 0)
traffic = k.get('estimated_traffic_volume', 0)
if impressions > 0:
estimated_ctr = (traffic / impressions) * 100
if estimated_ctr < CTR_MIN:
worst_by_ctr.append({
'keyword': k.get('keyword', ''),
'rank': k.get('rank', 0),
'impressions': impressions,
'estimated_ctr': round(estimated_ctr, 2),
'volume': impressions
})
# Worst by position
worst_by_position = [
{
'keyword': k.get('keyword', ''),
'rank': k.get('rank', 0),
'impressions': k.get('avg_search_volume', 0),
'volume': k.get('avg_search_volume', 0)
}
for k in keywords_with_data
if k.get('rank', 100) > 30
]
# Sort and limit
worst_by_ctr.sort(key=lambda x: x['estimated_ctr'])
worst_by_position.sort(key=lambda x: x['rank'], reverse=True)
return {
'by_ctr': worst_by_ctr[:20],
'by_position': worst_by_position[:20]
}
def _generate_mock_keywords_data(self, domain: str, competitor_domains: List[str]) -> ModuleResult:
"""Generate realistic mock data when APIs are unavailable"""
mock_data = self._generate_mock_domain_data(domain)
result_data = self._process_keywords_data(
mock_data,
{}, # No competitor data for mock
domain,
[]
)
# Add metadata
result_data['meta'] = {
'last_updated': datetime.now().isoformat(),
'processing_time': 0.5,
'locale': 'en-US'
}
return ModuleResult(success=True, data=result_data)
def _generate_mock_domain_data(self, domain: str) -> Dict[str, Any]:
"""Generate mock domain data with realistic keywords, enriched if possible"""
base_keywords = [
f'{domain.replace(".", " ")} services', f'{domain.replace(".", " ")} reviews',
f'best {domain.replace(".", " ")}', f'{domain.replace(".", " ")} pricing',
f'how to use {domain.replace(".", " ")}', f'{domain.replace(".", " ")} alternatives',
f'{domain.replace(".", " ")} login', f'{domain.replace(".", " ")} features',
f'{domain.replace(".", " ")} support', f'{domain.replace(".", " ")} tutorial'
]
# Try to get real search volumes from enrichment API if available
enriched_volumes = {}
if self.rapidapi_key:
print("Trying to get real search volumes from enrichment API...")
enriched_volumes = self._batch_enrich_keywords(base_keywords[:5]) # Limit to save quota
mock_keywords = []
default_ranks = [5, 12, 23, 8, 35, 18, 2, 15, 42, 28]
default_volumes = [1200, 890, 560, 720, 340, 480, 2100, 650, 290, 410]
for i, keyword in enumerate(base_keywords):
# Use real volume if available, otherwise use default
if keyword in enriched_volumes:
volume = enriched_volumes[keyword].get('avg_search_volume', default_volumes[i])
print(f"✅ Got real volume for '{keyword}': {volume}")
else:
volume = default_volumes[i]
rank = default_ranks[i]
# Estimate traffic based on position and CTR
ctr_by_position = {1: 28, 2: 15, 3: 11, 5: 7, 8: 5, 12: 3, 15: 2, 18: 1.5, 23: 1, 28: 0.8, 35: 0.5, 42: 0.3}
estimated_ctr = ctr_by_position.get(rank, 0.2)
estimated_traffic = int(volume * estimated_ctr / 100)
mock_keywords.append({
'keyword': keyword,
'rank': rank,
'avg_search_volume': volume,
'estimated_traffic_volume': estimated_traffic
})
# Calculate domain statistics
stats = {
'organic': {
'keywords_in_pos_1': 0,
'keywords_in_pos_2_3': 2,
'keywords_in_pos_4_10': 3,
'keywords_in_pos_11_20': 3,
'keywords_in_pos_21_50': 2,
'total_keywords_count': len(mock_keywords),
'Estimated_traffic_volume': sum(k['estimated_traffic_volume'] for k in mock_keywords),
'is_new': 2,
'is_up': 3,
'is_down': 1,
'is_lost': 0
}
}
return {
'domain': domain,
'statistics': stats,
'keywords': mock_keywords
}
def _fetch_keywords_enrichment_only(self, domain: str, quick_scan: bool) -> Dict[str, Any]:
"""Use only the enrichment API when rankings API fails"""
print(f"Using enrichment API only for {domain} (rankings API quota exceeded)")
# Generate basic keyword ideas based on domain
domain_clean = domain.replace('.', ' ')
keyword_ideas = [
f"{domain_clean}", f"{domain_clean} login", f"{domain_clean} pricing",
f"{domain_clean} features", f"{domain_clean} reviews", f"best {domain_clean}",
f"{domain_clean} alternatives", f"how to use {domain_clean}",
f"{domain_clean} tutorial", f"{domain_clean} support"
]
# Get real search volumes from enrichment API
enriched_data = self._batch_enrich_keywords(keyword_ideas)
# Build realistic keywords with search volumes but estimated rankings
keywords = []
estimated_ranks = [2, 1, 8, 12, 15, 25, 18, 35, 28, 45] # Mixed realistic ranks
for i, keyword in enumerate(keyword_ideas):
if keyword in enriched_data:
volume = enriched_data[keyword].get('avg_search_volume', 500)
competition = enriched_data[keyword].get('competition_level', 'MEDIUM')
else:
volume = max(100, 1000 - i * 80) # Decreasing volume
competition = 'MEDIUM'
rank = estimated_ranks[i] if i < len(estimated_ranks) else 30 + i
# Estimate traffic based on rank and volume
ctr_by_position = {1: 28, 2: 15, 3: 11, 8: 5, 12: 3, 15: 2, 18: 1.5, 25: 1, 28: 0.8, 35: 0.5, 45: 0.3}
estimated_ctr = ctr_by_position.get(rank, 0.2)
estimated_traffic = int(volume * estimated_ctr / 100)
keywords.append({
'keyword': keyword,
'rank': rank,
'avg_search_volume': volume,
'estimated_traffic_volume': estimated_traffic,
'competition_level': competition
})
# Calculate domain statistics
top3 = sum(1 for k in keywords if k['rank'] <= 3)
top10 = sum(1 for k in keywords if k['rank'] <= 10)
top50 = sum(1 for k in keywords if k['rank'] <= 50)
stats = {
'organic': {
'keywords_in_pos_1': sum(1 for k in keywords if k['rank'] == 1),
'keywords_in_pos_2_3': sum(1 for k in keywords if 2 <= k['rank'] <= 3),
'keywords_in_pos_4_10': sum(1 for k in keywords if 4 <= k['rank'] <= 10),
'keywords_in_pos_11_20': sum(1 for k in keywords if 11 <= k['rank'] <= 20),
'keywords_in_pos_21_50': sum(1 for k in keywords if 21 <= k['rank'] <= 50),
'total_keywords_count': len(keywords),
'Estimated_traffic_volume': sum(k['estimated_traffic_volume'] for k in keywords),
'is_new': 1,
'is_up': 2,
'is_down': 1,
'is_lost': 0
}
}
return {
'success': True,
'data': {
'domain': domain,
'statistics': stats,
'keywords': keywords
}
}
def _fetch_domain_keywords_similarweb(self, domain: str, quick_scan: bool) -> Dict[str, Any]:
"""Fetch keyword data from SimilarWeb Traffic API"""
try:
headers = {
'x-rapidapi-key': self.rapidapi_key,
'x-rapidapi-host': 'similarweb-traffic.p.rapidapi.com'
}
params = {'domain': domain}
response = requests.get(self.similarweb_url, headers=headers, params=params, timeout=self.timeout)
if response.status_code == 429:
print("SimilarWeb API quota exceeded")
raise Exception("Quota exceeded")
elif response.status_code == 403:
print("SimilarWeb API subscription required")
raise Exception("Not subscribed to SimilarWeb API")
elif response.status_code != 200:
print(f"SimilarWeb API error {response.status_code}: {response.text}")
raise Exception(f"API error {response.status_code}")
data = response.json()
# Extract top keywords from SimilarWeb response
top_keywords = data.get('TopKeywords', [])
if not top_keywords:
raise Exception("No keywords found in SimilarWeb response")
# Transform SimilarWeb data to our format
keywords = []
for i, kw_data in enumerate(top_keywords[:20]): # Limit to top 20
keyword = kw_data.get('Name', '')
volume = kw_data.get('Volume', 0)
estimated_value = kw_data.get('EstimatedValue', 0)
# Estimate ranking based on estimated value (higher value = better ranking)
# Top keywords are likely ranking well for the domain
estimated_rank = min(i + 1, 10) if i < 10 else min(i + 5, 50)
# Calculate estimated traffic from the estimated value
estimated_traffic = int(estimated_value / 10) if estimated_value else 0
keywords.append({
'keyword': keyword,
'rank': estimated_rank,
'avg_search_volume': volume,
'estimated_traffic_volume': estimated_traffic,
'estimated_value': estimated_value
})
# Calculate domain statistics based on SimilarWeb data
total_keywords = len(keywords)
top3 = sum(1 for k in keywords if k['rank'] <= 3)
top10 = sum(1 for k in keywords if k['rank'] <= 10)
top50 = sum(1 for k in keywords if k['rank'] <= 50)
# Get additional traffic metrics from SimilarWeb (note: SimilarWeb API has typo "Engagments")
engagements = data.get('Engagments', {}) # SimilarWeb API typo
visits = int(engagements.get('Visits', 0))
stats = {
'organic': {
'keywords_in_pos_1': sum(1 for k in keywords if k['rank'] == 1),
'keywords_in_pos_2_3': sum(1 for k in keywords if 2 <= k['rank'] <= 3),
'keywords_in_pos_4_10': sum(1 for k in keywords if 4 <= k['rank'] <= 10),
'keywords_in_pos_11_20': sum(1 for k in keywords if 11 <= k['rank'] <= 20),
'keywords_in_pos_21_50': sum(1 for k in keywords if 21 <= k['rank'] <= 50),
'total_keywords_count': total_keywords,
'Estimated_traffic_volume': sum(k['estimated_traffic_volume'] for k in keywords),
'is_new': 0, # SimilarWeb doesn't provide historical comparison
'is_up': 0,
'is_down': 0,
'is_lost': 0
}
}
return {
'success': True,
'data': {
'domain': domain,
'statistics': stats,
'keywords': keywords,
'traffic_data': {
'monthly_visits': visits,
'global_rank': data.get('GlobalRank', {}).get('Rank', 0),
'bounce_rate': engagements.get('BounceRate', 0)
}
}
}
except Exception as e:
return {'success': False, 'error': str(e)}
|