Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import autocuda | |
| from pyabsa.utils.pyabsa_utils import fprint | |
| from diffusers import ( | |
| AutoencoderKL, | |
| UNet2DConditionModel, | |
| StableDiffusionPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| DPMSolverMultistepScheduler, | |
| ) | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import utils | |
| import datetime | |
| import time | |
| import psutil | |
| from Waifu2x.magnify import ImageMagnifier | |
| start_time = time.time() | |
| is_colab = utils.is_google_colab() | |
| device = autocuda.auto_cuda() | |
| magnifier = ImageMagnifier() | |
| class Model: | |
| def __init__(self, name, path="", prefix=""): | |
| self.name = name | |
| self.path = path | |
| self.prefix = prefix | |
| self.pipe_t2i = None | |
| self.pipe_i2i = None | |
| models = [ | |
| # Model("anything v3", "anything-v3.0", "anything v3 style"), | |
| Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"), | |
| ] | |
| # Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), | |
| # Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "), | |
| # Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), | |
| # Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ") | |
| # Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), | |
| # Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""), | |
| # Model("Robo Diffusion", "nousr/robo-diffusion", ""), | |
| scheduler = DPMSolverMultistepScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| num_train_timesteps=1000, | |
| trained_betas=None, | |
| predict_epsilon=True, | |
| thresholding=False, | |
| algorithm_type="dpmsolver++", | |
| solver_type="midpoint", | |
| lower_order_final=True, | |
| ) | |
| custom_model = None | |
| if is_colab: | |
| models.insert(0, Model("Custom model")) | |
| custom_model = models[0] | |
| last_mode = "txt2img" | |
| current_model = models[1] if is_colab else models[0] | |
| current_model_path = current_model.path | |
| if is_colab: | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| current_model.path, | |
| torch_dtype=torch.float16, | |
| scheduler=scheduler, | |
| safety_checker=lambda images, clip_input: (images, False), | |
| ) | |
| else: # download all models | |
| print(f"{datetime.datetime.now()} Downloading vae...") | |
| vae = AutoencoderKL.from_pretrained( | |
| current_model.path, subfolder="vae", torch_dtype=torch.float16 | |
| ) | |
| for model in models: | |
| try: | |
| print(f"{datetime.datetime.now()} Downloading {model.name} model...") | |
| unet = UNet2DConditionModel.from_pretrained( | |
| model.path, subfolder="unet", torch_dtype=torch.float16 | |
| ) | |
| model.pipe_t2i = StableDiffusionPipeline.from_pretrained( | |
| model.path, | |
| unet=unet, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| scheduler=scheduler, | |
| ) | |
| model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( | |
| model.path, | |
| unet=unet, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| scheduler=scheduler, | |
| ) | |
| except Exception as e: | |
| print( | |
| f"{datetime.datetime.now()} Failed to load model " | |
| + model.name | |
| + ": " | |
| + str(e) | |
| ) | |
| models.remove(model) | |
| pipe = models[0].pipe_t2i | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to(device) | |
| device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
| def error_str(error, title="Error"): | |
| return ( | |
| f"""#### {title} | |
| {error}""" | |
| if error | |
| else "" | |
| ) | |
| def custom_model_changed(path): | |
| models[0].path = path | |
| global current_model | |
| current_model = models[0] | |
| def on_model_change(model_name): | |
| prefix = ( | |
| 'Enter prompt. "' | |
| + next((m.prefix for m in models if m.name == model_name), None) | |
| + '" is prefixed automatically' | |
| if model_name != models[0].name | |
| else "Don't forget to use the custom model prefix in the prompt!" | |
| ) | |
| return gr.update(visible=model_name == models[0].name), gr.update( | |
| placeholder=prefix | |
| ) | |
| def inference( | |
| model_name, | |
| prompt, | |
| guidance, | |
| steps, | |
| width=512, | |
| height=512, | |
| seed=0, | |
| img=None, | |
| strength=0.5, | |
| neg_prompt="", | |
| ): | |
| print(psutil.virtual_memory()) # print memory usage | |
| global current_model | |
| for model in models: | |
| if model.name == model_name: | |
| current_model = model | |
| model_path = current_model.path | |
| generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None | |
| try: | |
| if img is not None: | |
| return ( | |
| img_to_img( | |
| model_path, | |
| prompt, | |
| neg_prompt, | |
| img, | |
| strength, | |
| guidance, | |
| steps, | |
| width, | |
| height, | |
| generator, | |
| ), | |
| None, | |
| ) | |
| else: | |
| return ( | |
| txt_to_img( | |
| model_path, | |
| prompt, | |
| neg_prompt, | |
| guidance, | |
| steps, | |
| width, | |
| height, | |
| generator, | |
| ), | |
| None, | |
| ) | |
| except Exception as e: | |
| fprint(e) | |
| return None, error_str(e) | |
| def txt_to_img( | |
| model_path, prompt, neg_prompt, guidance, steps, width, height, generator | |
| ): | |
| print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") | |
| global last_mode | |
| global pipe | |
| global current_model_path | |
| if model_path != current_model_path or last_mode != "txt2img": | |
| current_model_path = model_path | |
| if is_colab or current_model == custom_model: | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| current_model_path, | |
| torch_dtype=torch.float16, | |
| scheduler=scheduler, | |
| safety_checker=lambda images, clip_input: (images, False), | |
| ) | |
| else: | |
| pipe = pipe.to("cpu") | |
| pipe = current_model.pipe_t2i | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to(device) | |
| last_mode = "txt2img" | |
| prompt = current_model.prefix + prompt | |
| result = pipe( | |
| prompt, | |
| negative_prompt=neg_prompt, | |
| # num_images_per_prompt=n_images, | |
| num_inference_steps=int(steps), | |
| guidance_scale=guidance, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ) | |
| result.images[0] = magnifier.magnify(result.images[0]) | |
| result.images[0] = magnifier.magnify(result.images[0]) | |
| # save image | |
| result.images[0].save( | |
| "{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( | |
| saved_path, | |
| datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), | |
| model_name, | |
| prompt, | |
| guidance, | |
| steps, | |
| width, | |
| height, | |
| seed, | |
| ) | |
| ) | |
| return replace_nsfw_images(result) | |
| def img_to_img( | |
| model_path, | |
| prompt, | |
| neg_prompt, | |
| img, | |
| strength, | |
| guidance, | |
| steps, | |
| width, | |
| height, | |
| generator, | |
| ): | |
| print(f"{datetime.datetime.now()} img_to_img, model: {model_path}") | |
| global last_mode | |
| global pipe | |
| global current_model_path | |
| if model_path != current_model_path or last_mode != "img2img": | |
| current_model_path = model_path | |
| if is_colab or current_model == custom_model: | |
| pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
| current_model_path, | |
| torch_dtype=torch.float16, | |
| scheduler=scheduler, | |
| safety_checker=lambda images, clip_input: (images, False), | |
| ) | |
| else: | |
| pipe = pipe.to("cpu") | |
| pipe = current_model.pipe_i2i | |
| if torch.cuda.is_available(): | |
| pipe = pipe.to(device) | |
| last_mode = "img2img" | |
| prompt = current_model.prefix + prompt | |
| ratio = min(height / img.height, width / img.width) | |
| img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
| result = pipe( | |
| prompt, | |
| negative_prompt=neg_prompt, | |
| # num_images_per_prompt=n_images, | |
| init_image=img, | |
| num_inference_steps=int(steps), | |
| strength=strength, | |
| guidance_scale=guidance, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ) | |
| result.images[0] = magnifier.magnify(result.images[0]) | |
| result.images[0] = magnifier.magnify(result.images[0]) | |
| # save image | |
| result.images[0].save( | |
| "{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( | |
| saved_path, | |
| datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), | |
| model_name, | |
| prompt, | |
| guidance, | |
| steps, | |
| width, | |
| height, | |
| seed, | |
| ) | |
| ) | |
| return replace_nsfw_images(result) | |
| def replace_nsfw_images(results): | |
| if is_colab: | |
| return results.images[0] | |
| for i in range(len(results.images)): | |
| if results.nsfw_content_detected[i]: | |
| results.images[i] = Image.open("nsfw.png") | |
| return results.images[0] | |
| if __name__ == "__main__": | |
| # inference("DALL-E", "a dog", 0, 1000, 512, 512, 0, None, 0.5, "") | |
| model_name = "anything v3" | |
| saved_path = r"imgs" | |
| if not os.path.exists(saved_path): | |
| os.mkdir(saved_path) | |
| n = 0 | |
| while True: | |
| prompt_keys = [ | |
| "beautiful eyes", | |
| "cumulonimbus clouds", | |
| "sky", | |
| "detailed fingers", | |
| random.choice( | |
| [ | |
| "white hair", | |
| "red hair", | |
| "blonde hair", | |
| "black hair", | |
| "green hair", | |
| ] | |
| ), | |
| random.choice( | |
| [ | |
| "blue eyes", | |
| "green eyes", | |
| "red eyes", | |
| "black eyes", | |
| "yellow eyes", | |
| ] | |
| ), | |
| random.choice(["flower meadow", "garden", "city", "river", "beach"]), | |
| random.choice(["Elif", "Angel"]), | |
| ] | |
| guidance = 7.5 | |
| steps = 25 | |
| # width = 1024 | |
| # height = 1024 | |
| # width = 768 | |
| # height = 1024 | |
| width = 512 | |
| height = 888 | |
| seed = 0 | |
| img = None | |
| strength = 0.5 | |
| neg_prompt = "" | |
| inference( | |
| model_name, | |
| ".".join(prompt_keys), | |
| guidance, | |
| steps, | |
| width=width, | |
| height=height, | |
| seed=seed, | |
| img=img, | |
| strength=strength, | |
| neg_prompt=neg_prompt, | |
| ) | |
| n += 1 | |
| fprint(n) | |