Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import cv2 | |
| import glob | |
| import mimetypes | |
| import numpy as np | |
| import os | |
| import shutil | |
| import subprocess | |
| import torch | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.utils.download_util import load_file_from_url | |
| from os import path as osp | |
| from tqdm import tqdm | |
| from realesrgan import RealESRGANer | |
| from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
| try: | |
| import ffmpeg | |
| except ImportError: | |
| import pip | |
| pip.main(["install", "--user", "ffmpeg-python"]) | |
| import ffmpeg | |
| def get_video_meta_info(video_path): | |
| ret = {} | |
| probe = ffmpeg.probe(video_path) | |
| video_streams = [ | |
| stream for stream in probe["streams"] if stream["codec_type"] == "video" | |
| ] | |
| has_audio = any(stream["codec_type"] == "audio" for stream in probe["streams"]) | |
| ret["width"] = video_streams[0]["width"] | |
| ret["height"] = video_streams[0]["height"] | |
| ret["fps"] = eval(video_streams[0]["avg_frame_rate"]) | |
| ret["audio"] = ffmpeg.input(video_path).audio if has_audio else None | |
| ret["nb_frames"] = int(video_streams[0]["nb_frames"]) | |
| return ret | |
| def get_sub_video(args, num_process, process_idx): | |
| if num_process == 1: | |
| return args.input | |
| meta = get_video_meta_info(args.input) | |
| duration = int(meta["nb_frames"] / meta["fps"]) | |
| part_time = duration // num_process | |
| print(f"duration: {duration}, part_time: {part_time}") | |
| os.makedirs( | |
| osp.join(args.output, f"{args.video_name}_inp_tmp_videos"), exist_ok=True | |
| ) | |
| out_path = osp.join( | |
| args.output, f"{args.video_name}_inp_tmp_videos", f"{process_idx:03d}.mp4" | |
| ) | |
| cmd = [ | |
| args.ffmpeg_bin, | |
| f"-i {args.input}", | |
| "-ss", | |
| f"{part_time * process_idx}", | |
| f"-to {part_time * (process_idx + 1)}" | |
| if process_idx != num_process - 1 | |
| else "", | |
| "-async 1", | |
| out_path, | |
| "-y", | |
| ] | |
| print(" ".join(cmd)) | |
| subprocess.call(" ".join(cmd), shell=True) | |
| return out_path | |
| class Reader: | |
| def __init__(self, args, total_workers=1, worker_idx=0): | |
| self.args = args | |
| input_type = mimetypes.guess_type(args.input)[0] | |
| self.input_type = "folder" if input_type is None else input_type | |
| self.paths = [] # for image&folder type | |
| self.audio = None | |
| self.input_fps = None | |
| if self.input_type.startswith("video"): | |
| video_path = get_sub_video(args, total_workers, worker_idx) | |
| self.stream_reader = ( | |
| ffmpeg.input(video_path) | |
| .output("pipe:", format="rawvideo", pix_fmt="bgr24", loglevel="error") | |
| .run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
| ) | |
| meta = get_video_meta_info(video_path) | |
| self.width = meta["width"] | |
| self.height = meta["height"] | |
| self.input_fps = meta["fps"] | |
| self.audio = meta["audio"] | |
| self.nb_frames = meta["nb_frames"] | |
| else: | |
| if self.input_type.startswith("image"): | |
| self.paths = [args.input] | |
| else: | |
| paths = sorted(glob.glob(os.path.join(args.input, "*"))) | |
| tot_frames = len(paths) | |
| num_frame_per_worker = tot_frames // total_workers + ( | |
| 1 if tot_frames % total_workers else 0 | |
| ) | |
| self.paths = paths[ | |
| num_frame_per_worker | |
| * worker_idx : num_frame_per_worker | |
| * (worker_idx + 1) | |
| ] | |
| self.nb_frames = len(self.paths) | |
| assert self.nb_frames > 0, "empty folder" | |
| from PIL import Image | |
| tmp_img = Image.open(self.paths[0]) | |
| self.width, self.height = tmp_img.size | |
| self.idx = 0 | |
| def get_resolution(self): | |
| return self.height, self.width | |
| def get_fps(self): | |
| if self.args.fps is not None: | |
| return self.args.fps | |
| elif self.input_fps is not None: | |
| return self.input_fps | |
| return 24 | |
| def get_audio(self): | |
| return self.audio | |
| def __len__(self): | |
| return self.nb_frames | |
| def get_frame_from_stream(self): | |
| img_bytes = self.stream_reader.stdout.read( | |
| self.width * self.height * 3 | |
| ) # 3 bytes for one pixel | |
| if not img_bytes: | |
| return None | |
| img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3]) | |
| return img | |
| def get_frame_from_list(self): | |
| if self.idx >= self.nb_frames: | |
| return None | |
| img = cv2.imread(self.paths[self.idx]) | |
| self.idx += 1 | |
| return img | |
| def get_frame(self): | |
| if self.input_type.startswith("video"): | |
| return self.get_frame_from_stream() | |
| else: | |
| return self.get_frame_from_list() | |
| def close(self): | |
| if self.input_type.startswith("video"): | |
| self.stream_reader.stdin.close() | |
| self.stream_reader.wait() | |
| class Writer: | |
| def __init__(self, args, audio, height, width, video_save_path, fps): | |
| out_width, out_height = int(width * args.outscale), int(height * args.outscale) | |
| if out_height > 2160: | |
| print( | |
| "You are generating video that is larger than 4K, which will be very slow due to IO speed.", | |
| "We highly recommend to decrease the outscale(aka, -s).", | |
| ) | |
| if audio is not None: | |
| self.stream_writer = ( | |
| ffmpeg.input( | |
| "pipe:", | |
| format="rawvideo", | |
| pix_fmt="bgr24", | |
| s=f"{out_width}x{out_height}", | |
| framerate=fps, | |
| ) | |
| .output( | |
| audio, | |
| video_save_path, | |
| pix_fmt="yuv420p", | |
| vcodec="libx264", | |
| loglevel="error", | |
| acodec="copy", | |
| ) | |
| .overwrite_output() | |
| .run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
| ) | |
| else: | |
| self.stream_writer = ( | |
| ffmpeg.input( | |
| "pipe:", | |
| format="rawvideo", | |
| pix_fmt="bgr24", | |
| s=f"{out_width}x{out_height}", | |
| framerate=fps, | |
| ) | |
| .output( | |
| video_save_path, | |
| pix_fmt="yuv420p", | |
| vcodec="libx264", | |
| loglevel="error", | |
| ) | |
| .overwrite_output() | |
| .run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin) | |
| ) | |
| def write_frame(self, frame): | |
| frame = frame.astype(np.uint8).tobytes() | |
| self.stream_writer.stdin.write(frame) | |
| def close(self): | |
| self.stream_writer.stdin.close() | |
| self.stream_writer.wait() | |
| def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0): | |
| # ---------------------- determine models according to model names ---------------------- # | |
| args.model_name = args.model_name.split(".pth")[0] | |
| if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" | |
| ] | |
| elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" | |
| ] | |
| elif ( | |
| args.model_name == "RealESRGAN_x4plus_anime_6B" | |
| ): # x4 RRDBNet model with 6 blocks | |
| model = RRDBNet( | |
| num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" | |
| ] | |
| elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=2, | |
| ) | |
| netscale = 2 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" | |
| ] | |
| elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=16, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" | |
| ] | |
| elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=32, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| netscale = 4 | |
| file_url = [ | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
| "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
| ] | |
| # ---------------------- determine model paths ---------------------- # | |
| model_path = os.path.join("weights", args.model_name + ".pth") | |
| if not os.path.isfile(model_path): | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| for url in file_url: | |
| # model_path will be updated | |
| model_path = load_file_from_url( | |
| url=url, | |
| model_dir=os.path.join(ROOT_DIR, "weights"), | |
| progress=True, | |
| file_name=None, | |
| ) | |
| # use dni to control the denoise strength | |
| dni_weight = None | |
| if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1: | |
| wdn_model_path = model_path.replace( | |
| "realesr-general-x4v3", "realesr-general-wdn-x4v3" | |
| ) | |
| model_path = [model_path, wdn_model_path] | |
| dni_weight = [args.denoise_strength, 1 - args.denoise_strength] | |
| # restorer | |
| upsampler = RealESRGANer( | |
| scale=netscale, | |
| model_path=model_path, | |
| dni_weight=dni_weight, | |
| model=model, | |
| tile=args.tile, | |
| tile_pad=args.tile_pad, | |
| pre_pad=args.pre_pad, | |
| half=not args.fp32, | |
| device=device, | |
| ) | |
| if "anime" in args.model_name and args.face_enhance: | |
| print( | |
| "face_enhance is not supported in anime models, we turned this option off for you. " | |
| "if you insist on turning it on, please manually comment the relevant lines of code." | |
| ) | |
| args.face_enhance = False | |
| if args.face_enhance: # Use GFPGAN for face enhancement | |
| from gfpgan import GFPGANer | |
| face_enhancer = GFPGANer( | |
| model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", | |
| upscale=args.outscale, | |
| arch="clean", | |
| channel_multiplier=2, | |
| bg_upsampler=upsampler, | |
| ) # TODO support custom device | |
| else: | |
| face_enhancer = None | |
| reader = Reader(args, total_workers, worker_idx) | |
| audio = reader.get_audio() | |
| height, width = reader.get_resolution() | |
| fps = reader.get_fps() | |
| writer = Writer(args, audio, height, width, video_save_path, fps) | |
| pbar = tqdm(total=len(reader), unit="frame", desc="inference") | |
| while True: | |
| img = reader.get_frame() | |
| if img is None: | |
| break | |
| try: | |
| if args.face_enhance: | |
| _, _, output = face_enhancer.enhance( | |
| img, has_aligned=False, only_center_face=False, paste_back=True | |
| ) | |
| else: | |
| output, _ = upsampler.enhance(img, outscale=args.outscale) | |
| except RuntimeError as error: | |
| print("Error", error) | |
| print( | |
| "If you encounter CUDA out of memory, try to set --tile with a smaller number." | |
| ) | |
| else: | |
| writer.write_frame(output) | |
| torch.cuda.synchronize(device) | |
| pbar.update(1) | |
| reader.close() | |
| writer.close() | |
| def run(args): | |
| args.video_name = osp.splitext(os.path.basename(args.input))[0] | |
| video_save_path = osp.join(args.output, f"{args.video_name}_{args.suffix}.mp4") | |
| if args.extract_frame_first: | |
| tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames") | |
| os.makedirs(tmp_frames_folder, exist_ok=True) | |
| os.system( | |
| f"ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png" | |
| ) | |
| args.input = tmp_frames_folder | |
| num_gpus = torch.cuda.device_count() | |
| num_process = num_gpus * args.num_process_per_gpu | |
| if num_process == 1: | |
| inference_video(args, video_save_path) | |
| return | |
| ctx = torch.multiprocessing.get_context("spawn") | |
| pool = ctx.Pool(num_process) | |
| os.makedirs( | |
| osp.join(args.output, f"{args.video_name}_out_tmp_videos"), exist_ok=True | |
| ) | |
| pbar = tqdm(total=num_process, unit="sub_video", desc="inference") | |
| for i in range(num_process): | |
| sub_video_save_path = osp.join( | |
| args.output, f"{args.video_name}_out_tmp_videos", f"{i:03d}.mp4" | |
| ) | |
| pool.apply_async( | |
| inference_video, | |
| args=( | |
| args, | |
| sub_video_save_path, | |
| torch.device(i % num_gpus), | |
| num_process, | |
| i, | |
| ), | |
| callback=lambda arg: pbar.update(1), | |
| ) | |
| pool.close() | |
| pool.join() | |
| # combine sub videos | |
| # prepare vidlist.txt | |
| with open(f"{args.output}/{args.video_name}_vidlist.txt", "w") as f: | |
| for i in range(num_process): | |
| f.write(f"file '{args.video_name}_out_tmp_videos/{i:03d}.mp4'\n") | |
| cmd = [ | |
| args.ffmpeg_bin, | |
| "-f", | |
| "concat", | |
| "-safe", | |
| "0", | |
| "-i", | |
| f"{args.output}/{args.video_name}_vidlist.txt", | |
| "-c", | |
| "copy", | |
| f"{video_save_path}", | |
| ] | |
| print(" ".join(cmd)) | |
| subprocess.call(cmd) | |
| shutil.rmtree(osp.join(args.output, f"{args.video_name}_out_tmp_videos")) | |
| if osp.exists(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")): | |
| shutil.rmtree(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")) | |
| os.remove(f"{args.output}/{args.video_name}_vidlist.txt") | |
| def main(): | |
| """Inference demo for Real-ESRGAN. | |
| It mainly for restoring anime videos. | |
| """ | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-i", "--input", type=str, default="inputs", help="Input video, image or folder" | |
| ) | |
| parser.add_argument( | |
| "-n", | |
| "--model_name", | |
| type=str, | |
| default="realesr-animevideov3", | |
| help=( | |
| "Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |" | |
| " RealESRGAN_x2plus | realesr-general-x4v3" | |
| "Default:realesr-animevideov3" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "-o", "--output", type=str, default="results", help="Output folder" | |
| ) | |
| parser.add_argument( | |
| "-dn", | |
| "--denoise_strength", | |
| type=float, | |
| default=0.5, | |
| help=( | |
| "Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. " | |
| "Only used for the realesr-general-x4v3 model" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "-s", | |
| "--outscale", | |
| type=float, | |
| default=4, | |
| help="The final upsampling scale of the image", | |
| ) | |
| parser.add_argument( | |
| "--suffix", type=str, default="out", help="Suffix of the restored video" | |
| ) | |
| parser.add_argument( | |
| "-t", | |
| "--tile", | |
| type=int, | |
| default=0, | |
| help="Tile size, 0 for no tile during testing", | |
| ) | |
| parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding") | |
| parser.add_argument( | |
| "--pre_pad", type=int, default=0, help="Pre padding size at each border" | |
| ) | |
| parser.add_argument( | |
| "--face_enhance", action="store_true", help="Use GFPGAN to enhance face" | |
| ) | |
| parser.add_argument( | |
| "--fp32", | |
| action="store_true", | |
| help="Use fp32 precision during inference. Default: fp16 (half precision).", | |
| ) | |
| parser.add_argument( | |
| "--fps", type=float, default=None, help="FPS of the output video" | |
| ) | |
| parser.add_argument( | |
| "--ffmpeg_bin", type=str, default="ffmpeg", help="The path to ffmpeg" | |
| ) | |
| parser.add_argument("--extract_frame_first", action="store_true") | |
| parser.add_argument("--num_process_per_gpu", type=int, default=1) | |
| parser.add_argument( | |
| "--alpha_upsampler", | |
| type=str, | |
| default="realesrgan", | |
| help="The upsampler for the alpha channels. Options: realesrgan | bicubic", | |
| ) | |
| parser.add_argument( | |
| "--ext", | |
| type=str, | |
| default="auto", | |
| help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs", | |
| ) | |
| args = parser.parse_args() | |
| args.input = args.input.rstrip("/").rstrip("\\") | |
| os.makedirs(args.output, exist_ok=True) | |
| if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type( | |
| args.input | |
| )[0].startswith("video"): | |
| is_video = True | |
| else: | |
| is_video = False | |
| if is_video and args.input.endswith(".flv"): | |
| mp4_path = args.input.replace(".flv", ".mp4") | |
| os.system(f"ffmpeg -i {args.input} -codec copy {mp4_path}") | |
| args.input = mp4_path | |
| if args.extract_frame_first and not is_video: | |
| args.extract_frame_first = False | |
| run(args) | |
| if args.extract_frame_first: | |
| tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames") | |
| shutil.rmtree(tmp_frames_folder) | |
| if __name__ == "__main__": | |
| main() | |