Spaces:
Running
on
Zero
Running
on
Zero
| # flake8: noqa | |
| # This file is used for deploying replicate models | |
| # running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0 | |
| # push: cog push r8.im/xinntao/realesrgan | |
| import os | |
| os.system("pip install gfpgan") | |
| os.system("python setup.py develop") | |
| import cv2 | |
| import shutil | |
| import tempfile | |
| import torch | |
| from basicsr.archs.rrdbnet_arch import RRDBNet | |
| from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
| from realesrgan.utils import RealESRGANer | |
| try: | |
| from cog import BasePredictor, Input, Path | |
| from gfpgan import GFPGANer | |
| except Exception: | |
| print("please install cog and realesrgan package") | |
| class Predictor(BasePredictor): | |
| def setup(self): | |
| os.makedirs("output", exist_ok=True) | |
| # download weights | |
| if not os.path.exists("weights/realesr-general-x4v3.pth"): | |
| os.system( | |
| "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights" | |
| ) | |
| if not os.path.exists("weights/GFPGANv1.4.pth"): | |
| os.system( | |
| "wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights" | |
| ) | |
| if not os.path.exists("weights/RealESRGAN_x4plus.pth"): | |
| os.system( | |
| "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights" | |
| ) | |
| if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"): | |
| os.system( | |
| "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights" | |
| ) | |
| if not os.path.exists("weights/realesr-animevideov3.pth"): | |
| os.system( | |
| "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights" | |
| ) | |
| def choose_model(self, scale, version, tile=0): | |
| half = True if torch.cuda.is_available() else False | |
| if version == "General - RealESRGANplus": | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=23, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| model_path = "weights/RealESRGAN_x4plus.pth" | |
| self.upsampler = RealESRGANer( | |
| scale=4, | |
| model_path=model_path, | |
| model=model, | |
| tile=tile, | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=half, | |
| ) | |
| elif version == "General - v3": | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=32, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| model_path = "weights/realesr-general-x4v3.pth" | |
| self.upsampler = RealESRGANer( | |
| scale=4, | |
| model_path=model_path, | |
| model=model, | |
| tile=tile, | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=half, | |
| ) | |
| elif version == "Anime - anime6B": | |
| model = RRDBNet( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_block=6, | |
| num_grow_ch=32, | |
| scale=4, | |
| ) | |
| model_path = "weights/RealESRGAN_x4plus_anime_6B.pth" | |
| self.upsampler = RealESRGANer( | |
| scale=4, | |
| model_path=model_path, | |
| model=model, | |
| tile=tile, | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=half, | |
| ) | |
| elif version == "AnimeVideo - v3": | |
| model = SRVGGNetCompact( | |
| num_in_ch=3, | |
| num_out_ch=3, | |
| num_feat=64, | |
| num_conv=16, | |
| upscale=4, | |
| act_type="prelu", | |
| ) | |
| model_path = "weights/realesr-animevideov3.pth" | |
| self.upsampler = RealESRGANer( | |
| scale=4, | |
| model_path=model_path, | |
| model=model, | |
| tile=tile, | |
| tile_pad=10, | |
| pre_pad=0, | |
| half=half, | |
| ) | |
| self.face_enhancer = GFPGANer( | |
| model_path="weights/GFPGANv1.4.pth", | |
| upscale=scale, | |
| arch="clean", | |
| channel_multiplier=2, | |
| bg_upsampler=self.upsampler, | |
| ) | |
| def predict( | |
| self, | |
| img: Path = Input(description="Input"), | |
| version: str = Input( | |
| description="RealESRGAN version. Please see [Readme] below for more descriptions", | |
| choices=[ | |
| "General - RealESRGANplus", | |
| "General - v3", | |
| "Anime - anime6B", | |
| "AnimeVideo - v3", | |
| ], | |
| default="General - v3", | |
| ), | |
| scale: float = Input(description="Rescaling factor", default=2), | |
| face_enhance: bool = Input( | |
| description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes", | |
| default=False, | |
| ), | |
| tile: int = Input( | |
| description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200", | |
| default=0, | |
| ), | |
| ) -> Path: | |
| if tile <= 100 or tile is None: | |
| tile = 0 | |
| print( | |
| f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}." | |
| ) | |
| try: | |
| extension = os.path.splitext(os.path.basename(str(img)))[1] | |
| img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) | |
| if len(img.shape) == 3 and img.shape[2] == 4: | |
| img_mode = "RGBA" | |
| elif len(img.shape) == 2: | |
| img_mode = None | |
| img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
| else: | |
| img_mode = None | |
| h, w = img.shape[0:2] | |
| if h < 300: | |
| img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
| self.choose_model(scale, version, tile) | |
| try: | |
| if face_enhance: | |
| _, _, output = self.face_enhancer.enhance( | |
| img, has_aligned=False, only_center_face=False, paste_back=True | |
| ) | |
| else: | |
| output, _ = self.upsampler.enhance(img, outscale=scale) | |
| except RuntimeError as error: | |
| print("Error", error) | |
| print( | |
| 'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.' | |
| ) | |
| if img_mode == "RGBA": # RGBA images should be saved in png format | |
| extension = "png" | |
| # save_path = f'output/out.{extension}' | |
| # cv2.imwrite(save_path, output) | |
| out_path = Path(tempfile.mkdtemp()) / f"out.{extension}" | |
| cv2.imwrite(str(out_path), output) | |
| except Exception as error: | |
| print("global exception: ", error) | |
| finally: | |
| clean_folder("output") | |
| return out_path | |
| def clean_folder(folder): | |
| for filename in os.listdir(folder): | |
| file_path = os.path.join(folder, filename) | |
| try: | |
| if os.path.isfile(file_path) or os.path.islink(file_path): | |
| os.unlink(file_path) | |
| elif os.path.isdir(file_path): | |
| shutil.rmtree(file_path) | |
| except Exception as e: | |
| print(f"Failed to delete {file_path}. Reason: {e}") | |