yaghi27 commited on
Commit
701f963
·
1 Parent(s): f037527

Upload petr_vovnet_gridmask_p4_800x320.py

Browse files
model/PETR/petr_vovnet_gridmask_p4_800x320.py ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_scale_lr = dict(base_batch_size=32, enable=False)
2
+ backbone_norm_cfg = dict(requires_grad=True, type='LN')
3
+ backend_args = None
4
+ class_names = [
5
+ 'car',
6
+ 'truck',
7
+ 'construction_vehicle',
8
+ 'bus',
9
+ 'trailer',
10
+ 'barrier',
11
+ 'motorcycle',
12
+ 'bicycle',
13
+ 'pedestrian',
14
+ 'traffic_cone',
15
+ ]
16
+ custom_imports = dict(imports=[
17
+ 'projects.PETR.petr',
18
+ ])
19
+ data_prefix = dict(img='', pts='samples/LIDAR_TOP', sweeps='sweeps/LIDAR_TOP')
20
+ data_root = 'data/nuscenes/'
21
+ dataset_type = 'NuScenesDataset'
22
+ db_sampler = dict(
23
+ backend_args=None,
24
+ classes=[
25
+ 'car',
26
+ 'truck',
27
+ 'construction_vehicle',
28
+ 'bus',
29
+ 'trailer',
30
+ 'barrier',
31
+ 'motorcycle',
32
+ 'bicycle',
33
+ 'pedestrian',
34
+ 'traffic_cone',
35
+ ],
36
+ data_root='data/nuscenes/',
37
+ info_path='data/nuscenes/nuscenes_dbinfos_train.pkl',
38
+ points_loader=dict(
39
+ backend_args=None,
40
+ coord_type='LIDAR',
41
+ load_dim=5,
42
+ type='LoadPointsFromFile',
43
+ use_dim=[
44
+ 0,
45
+ 1,
46
+ 2,
47
+ 3,
48
+ 4,
49
+ ]),
50
+ prepare=dict(
51
+ filter_by_difficulty=[
52
+ -1,
53
+ ],
54
+ filter_by_min_points=dict(
55
+ barrier=5,
56
+ bicycle=5,
57
+ bus=5,
58
+ car=5,
59
+ construction_vehicle=5,
60
+ motorcycle=5,
61
+ pedestrian=5,
62
+ traffic_cone=5,
63
+ trailer=5,
64
+ truck=5)),
65
+ rate=1.0,
66
+ sample_groups=dict(
67
+ barrier=2,
68
+ bicycle=6,
69
+ bus=4,
70
+ car=2,
71
+ construction_vehicle=7,
72
+ motorcycle=6,
73
+ pedestrian=2,
74
+ traffic_cone=2,
75
+ trailer=6,
76
+ truck=3))
77
+ default_hooks = dict(
78
+ checkpoint=dict(interval=-1, type='CheckpointHook'),
79
+ logger=dict(interval=50, type='LoggerHook'),
80
+ param_scheduler=dict(type='ParamSchedulerHook'),
81
+ sampler_seed=dict(type='DistSamplerSeedHook'),
82
+ timer=dict(type='IterTimerHook'),
83
+ visualization=dict(type='Det3DVisualizationHook'))
84
+ default_scope = 'mmdet3d'
85
+ env_cfg = dict(
86
+ cudnn_benchmark=False,
87
+ dist_cfg=dict(backend='nccl'),
88
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
89
+ eval_pipeline = [
90
+ dict(
91
+ backend_args=None,
92
+ coord_type='LIDAR',
93
+ load_dim=5,
94
+ type='LoadPointsFromFile',
95
+ use_dim=5),
96
+ dict(
97
+ backend_args=None,
98
+ sweeps_num=10,
99
+ test_mode=True,
100
+ type='LoadPointsFromMultiSweeps'),
101
+ dict(keys=[
102
+ 'points',
103
+ ], type='Pack3DDetInputs'),
104
+ ]
105
+ find_unused_parameters = False
106
+ ida_aug_conf = dict(
107
+ H=900,
108
+ W=1600,
109
+ bot_pct_lim=(
110
+ 0.0,
111
+ 0.0,
112
+ ),
113
+ final_dim=(
114
+ 320,
115
+ 800,
116
+ ),
117
+ rand_flip=True,
118
+ resize_lim=(
119
+ 0.47,
120
+ 0.625,
121
+ ),
122
+ rot_lim=(
123
+ 0.0,
124
+ 0.0,
125
+ ))
126
+ img_norm_cfg = dict(
127
+ mean=[
128
+ 103.53,
129
+ 116.28,
130
+ 123.675,
131
+ ],
132
+ std=[
133
+ 57.375,
134
+ 57.12,
135
+ 58.395,
136
+ ],
137
+ to_rgb=False)
138
+ input_modality = dict(use_camera=True, use_lidar=True)
139
+ launcher = 'none'
140
+ load_from = None
141
+ log_level = 'INFO'
142
+ log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50)
143
+ lr = 0.0001
144
+ metainfo = dict(classes=[
145
+ 'car',
146
+ 'truck',
147
+ 'construction_vehicle',
148
+ 'bus',
149
+ 'trailer',
150
+ 'barrier',
151
+ 'motorcycle',
152
+ 'bicycle',
153
+ 'pedestrian',
154
+ 'traffic_cone',
155
+ ])
156
+ model = dict(
157
+ data_preprocessor=dict(
158
+ bgr_to_rgb=False,
159
+ mean=[
160
+ 103.53,
161
+ 116.28,
162
+ 123.675,
163
+ ],
164
+ pad_size_divisor=32,
165
+ std=[
166
+ 57.375,
167
+ 57.12,
168
+ 58.395,
169
+ ],
170
+ type='Det3DDataPreprocessor'),
171
+ img_backbone=dict(
172
+ arch='regnetx_4.0gf',
173
+ init_cfg=dict(
174
+ checkpoint='open-mmlab://regnetx_4.0gf', type='Pretrained'),
175
+ out_indices=(
176
+ 2,
177
+ 3,
178
+ ),
179
+ type='mmdet.RegNet'),
180
+ img_neck=dict(
181
+ in_channels=[
182
+ 560,
183
+ 1360,
184
+ ], num_outs=2, out_channels=256, type='CPFPN'),
185
+ pts_bbox_head=dict(
186
+ LID=True,
187
+ bbox_coder=dict(
188
+ max_num=300,
189
+ num_classes=10,
190
+ pc_range=[
191
+ -51.2,
192
+ -51.2,
193
+ -5.0,
194
+ 51.2,
195
+ 51.2,
196
+ 3.0,
197
+ ],
198
+ post_center_range=[
199
+ -61.2,
200
+ -61.2,
201
+ -10.0,
202
+ 61.2,
203
+ 61.2,
204
+ 10.0,
205
+ ],
206
+ type='NMSFreeCoder',
207
+ voxel_size=[
208
+ 0.2,
209
+ 0.2,
210
+ 8,
211
+ ]),
212
+ in_channels=256,
213
+ loss_bbox=dict(loss_weight=0.25, type='mmdet.L1Loss'),
214
+ loss_cls=dict(
215
+ alpha=0.25,
216
+ gamma=2.0,
217
+ loss_weight=2.0,
218
+ type='mmdet.FocalLoss',
219
+ use_sigmoid=True),
220
+ loss_iou=dict(loss_weight=0.0, type='mmdet.GIoULoss'),
221
+ normedlinear=False,
222
+ num_classes=10,
223
+ num_query=900,
224
+ position_range=[
225
+ -61.2,
226
+ -61.2,
227
+ -10.0,
228
+ 61.2,
229
+ 61.2,
230
+ 10.0,
231
+ ],
232
+ positional_encoding=dict(
233
+ normalize=True, num_feats=128, type='SinePositionalEncoding3D'),
234
+ transformer=dict(
235
+ decoder=dict(
236
+ num_layers=6,
237
+ return_intermediate=True,
238
+ transformerlayers=dict(
239
+ attn_cfgs=[
240
+ dict(
241
+ attn_drop=0.1,
242
+ dropout_layer=dict(drop_prob=0.1, type='Dropout'),
243
+ embed_dims=256,
244
+ num_heads=8,
245
+ type='MultiheadAttention'),
246
+ dict(
247
+ attn_drop=0.1,
248
+ dropout_layer=dict(drop_prob=0.1, type='Dropout'),
249
+ embed_dims=256,
250
+ num_heads=8,
251
+ type='PETRMultiheadAttention'),
252
+ ],
253
+ feedforward_channels=2048,
254
+ ffn_dropout=0.1,
255
+ operation_order=(
256
+ 'self_attn',
257
+ 'norm',
258
+ 'cross_attn',
259
+ 'norm',
260
+ 'ffn',
261
+ 'norm',
262
+ ),
263
+ type='PETRTransformerDecoderLayer'),
264
+ type='PETRTransformerDecoder'),
265
+ type='PETRTransformer'),
266
+ type='PETRHead',
267
+ with_multiview=True,
268
+ with_position=True),
269
+ train_cfg=dict(
270
+ pts=dict(
271
+ assigner=dict(
272
+ cls_cost=dict(type='FocalLossCost', weight=2.0),
273
+ iou_cost=dict(type='IoUCost', weight=0.0),
274
+ pc_range=[
275
+ -51.2,
276
+ -51.2,
277
+ -5.0,
278
+ 51.2,
279
+ 51.2,
280
+ 3.0,
281
+ ],
282
+ reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
283
+ type='HungarianAssigner3D'),
284
+ grid_size=[
285
+ 512,
286
+ 512,
287
+ 1,
288
+ ],
289
+ out_size_factor=4,
290
+ point_cloud_range=[
291
+ -51.2,
292
+ -51.2,
293
+ -5.0,
294
+ 51.2,
295
+ 51.2,
296
+ 3.0,
297
+ ],
298
+ voxel_size=[
299
+ 0.2,
300
+ 0.2,
301
+ 8,
302
+ ])),
303
+ type='PETR',
304
+ use_grid_mask=True)
305
+ num_epochs = 30
306
+ optim_wrapper = dict(
307
+ clip_grad=dict(max_norm=35, norm_type=2),
308
+ optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.01),
309
+ paramwise_cfg=dict(custom_keys=dict(img_backbone=dict(lr_mult=0.1))),
310
+ type='OptimWrapper')
311
+ param_scheduler = [
312
+ dict(
313
+ begin=0,
314
+ by_epoch=False,
315
+ end=1500,
316
+ start_factor=0.3333333333333333,
317
+ type='LinearLR'),
318
+ dict(T_max=30, by_epoch=True, type='CosineAnnealingLR'),
319
+ ]
320
+ point_cloud_range = [
321
+ -51.2,
322
+ -51.2,
323
+ -5.0,
324
+ 51.2,
325
+ 51.2,
326
+ 3.0,
327
+ ]
328
+ randomness = dict(deterministic=False, diff_rank_seed=False, seed=1)
329
+ resume = False
330
+ test_cfg = dict()
331
+ test_dataloader = dict(
332
+ batch_size=1,
333
+ dataset=dict(
334
+ ann_file='nuscenes_infos_val.pkl',
335
+ backend_args=None,
336
+ box_type_3d='LiDAR',
337
+ data_prefix=dict(
338
+ CAM_BACK='samples/CAM_BACK',
339
+ CAM_BACK_LEFT='samples/CAM_BACK_LEFT',
340
+ CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
341
+ CAM_FRONT='samples/CAM_FRONT',
342
+ CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
343
+ CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
344
+ img='',
345
+ pts='samples/LIDAR_TOP',
346
+ sweeps='sweeps/LIDAR_TOP'),
347
+ data_root='data/nuscenes/',
348
+ metainfo=dict(classes=[
349
+ 'car',
350
+ 'truck',
351
+ 'construction_vehicle',
352
+ 'bus',
353
+ 'trailer',
354
+ 'barrier',
355
+ 'motorcycle',
356
+ 'bicycle',
357
+ 'pedestrian',
358
+ 'traffic_cone',
359
+ ]),
360
+ modality=dict(use_camera=True, use_lidar=True),
361
+ pipeline=[
362
+ dict(
363
+ backend_args=None,
364
+ to_float32=True,
365
+ type='LoadMultiViewImageFromFiles'),
366
+ dict(
367
+ data_aug_conf=dict(
368
+ H=900,
369
+ W=1600,
370
+ bot_pct_lim=(
371
+ 0.0,
372
+ 0.0,
373
+ ),
374
+ final_dim=(
375
+ 320,
376
+ 800,
377
+ ),
378
+ rand_flip=True,
379
+ resize_lim=(
380
+ 0.47,
381
+ 0.625,
382
+ ),
383
+ rot_lim=(
384
+ 0.0,
385
+ 0.0,
386
+ )),
387
+ training=False,
388
+ type='ResizeCropFlipImage'),
389
+ dict(keys=[
390
+ 'img',
391
+ ], type='Pack3DDetInputs'),
392
+ ],
393
+ test_mode=True,
394
+ type='NuScenesDataset',
395
+ use_valid_flag=True),
396
+ drop_last=False,
397
+ num_workers=1,
398
+ persistent_workers=True,
399
+ sampler=dict(shuffle=False, type='DefaultSampler'))
400
+ test_evaluator = dict(
401
+ ann_file='data/nuscenes/nuscenes_infos_val.pkl',
402
+ backend_args=None,
403
+ data_root='data/nuscenes/',
404
+ metric='bbox',
405
+ type='NuScenesMetric')
406
+ test_pipeline = [
407
+ dict(
408
+ backend_args=None, to_float32=True,
409
+ type='LoadMultiViewImageFromFiles'),
410
+ dict(
411
+ data_aug_conf=dict(
412
+ H=900,
413
+ W=1600,
414
+ bot_pct_lim=(
415
+ 0.0,
416
+ 0.0,
417
+ ),
418
+ final_dim=(
419
+ 320,
420
+ 800,
421
+ ),
422
+ rand_flip=True,
423
+ resize_lim=(
424
+ 0.47,
425
+ 0.625,
426
+ ),
427
+ rot_lim=(
428
+ 0.0,
429
+ 0.0,
430
+ )),
431
+ training=False,
432
+ type='ResizeCropFlipImage'),
433
+ dict(keys=[
434
+ 'img',
435
+ ], type='Pack3DDetInputs'),
436
+ ]
437
+ train_cfg = dict(by_epoch=True, max_epochs=30, val_interval=3)
438
+ train_dataloader = dict(
439
+ batch_size=1,
440
+ dataset=dict(
441
+ ann_file='nuscenes_infos_train.pkl',
442
+ backend_args=None,
443
+ box_type_3d='LiDAR',
444
+ data_prefix=dict(
445
+ CAM_BACK='samples/CAM_BACK',
446
+ CAM_BACK_LEFT='samples/CAM_BACK_LEFT',
447
+ CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
448
+ CAM_FRONT='samples/CAM_FRONT',
449
+ CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
450
+ CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
451
+ img='',
452
+ pts='samples/LIDAR_TOP',
453
+ sweeps='sweeps/LIDAR_TOP'),
454
+ data_root='data/nuscenes/',
455
+ metainfo=dict(classes=[
456
+ 'car',
457
+ 'truck',
458
+ 'construction_vehicle',
459
+ 'bus',
460
+ 'trailer',
461
+ 'barrier',
462
+ 'motorcycle',
463
+ 'bicycle',
464
+ 'pedestrian',
465
+ 'traffic_cone',
466
+ ]),
467
+ modality=dict(use_camera=True, use_lidar=True),
468
+ pipeline=[
469
+ dict(
470
+ backend_args=None,
471
+ to_float32=True,
472
+ type='LoadMultiViewImageFromFiles'),
473
+ dict(
474
+ type='LoadAnnotations3D',
475
+ with_attr_label=False,
476
+ with_bbox_3d=True,
477
+ with_label_3d=True),
478
+ dict(
479
+ point_cloud_range=[
480
+ -51.2,
481
+ -51.2,
482
+ -5.0,
483
+ 51.2,
484
+ 51.2,
485
+ 3.0,
486
+ ],
487
+ type='ObjectRangeFilter'),
488
+ dict(
489
+ classes=[
490
+ 'car',
491
+ 'truck',
492
+ 'construction_vehicle',
493
+ 'bus',
494
+ 'trailer',
495
+ 'barrier',
496
+ 'motorcycle',
497
+ 'bicycle',
498
+ 'pedestrian',
499
+ 'traffic_cone',
500
+ ],
501
+ type='ObjectNameFilter'),
502
+ dict(
503
+ data_aug_conf=dict(
504
+ H=900,
505
+ W=1600,
506
+ bot_pct_lim=(
507
+ 0.0,
508
+ 0.0,
509
+ ),
510
+ final_dim=(
511
+ 320,
512
+ 800,
513
+ ),
514
+ rand_flip=True,
515
+ resize_lim=(
516
+ 0.47,
517
+ 0.625,
518
+ ),
519
+ rot_lim=(
520
+ 0.0,
521
+ 0.0,
522
+ )),
523
+ training=True,
524
+ type='ResizeCropFlipImage'),
525
+ dict(
526
+ reverse_angle=False,
527
+ rot_range=[
528
+ -0.3925,
529
+ 0.3925,
530
+ ],
531
+ scale_ratio_range=[
532
+ 0.95,
533
+ 1.05,
534
+ ],
535
+ training=True,
536
+ translation_std=[
537
+ 0,
538
+ 0,
539
+ 0,
540
+ ],
541
+ type='GlobalRotScaleTransImage'),
542
+ dict(
543
+ keys=[
544
+ 'img',
545
+ 'gt_bboxes',
546
+ 'gt_bboxes_labels',
547
+ 'attr_labels',
548
+ 'gt_bboxes_3d',
549
+ 'gt_labels_3d',
550
+ 'centers_2d',
551
+ 'depths',
552
+ ],
553
+ type='Pack3DDetInputs'),
554
+ ],
555
+ test_mode=False,
556
+ type='NuScenesDataset',
557
+ use_valid_flag=True),
558
+ num_workers=4,
559
+ persistent_workers=True,
560
+ sampler=dict(shuffle=True, type='DefaultSampler'))
561
+ train_pipeline = [
562
+ dict(
563
+ backend_args=None, to_float32=True,
564
+ type='LoadMultiViewImageFromFiles'),
565
+ dict(
566
+ type='LoadAnnotations3D',
567
+ with_attr_label=False,
568
+ with_bbox_3d=True,
569
+ with_label_3d=True),
570
+ dict(
571
+ point_cloud_range=[
572
+ -51.2,
573
+ -51.2,
574
+ -5.0,
575
+ 51.2,
576
+ 51.2,
577
+ 3.0,
578
+ ],
579
+ type='ObjectRangeFilter'),
580
+ dict(
581
+ classes=[
582
+ 'car',
583
+ 'truck',
584
+ 'construction_vehicle',
585
+ 'bus',
586
+ 'trailer',
587
+ 'barrier',
588
+ 'motorcycle',
589
+ 'bicycle',
590
+ 'pedestrian',
591
+ 'traffic_cone',
592
+ ],
593
+ type='ObjectNameFilter'),
594
+ dict(
595
+ data_aug_conf=dict(
596
+ H=900,
597
+ W=1600,
598
+ bot_pct_lim=(
599
+ 0.0,
600
+ 0.0,
601
+ ),
602
+ final_dim=(
603
+ 320,
604
+ 800,
605
+ ),
606
+ rand_flip=True,
607
+ resize_lim=(
608
+ 0.47,
609
+ 0.625,
610
+ ),
611
+ rot_lim=(
612
+ 0.0,
613
+ 0.0,
614
+ )),
615
+ training=True,
616
+ type='ResizeCropFlipImage'),
617
+ dict(
618
+ reverse_angle=False,
619
+ rot_range=[
620
+ -0.3925,
621
+ 0.3925,
622
+ ],
623
+ scale_ratio_range=[
624
+ 0.95,
625
+ 1.05,
626
+ ],
627
+ training=True,
628
+ translation_std=[
629
+ 0,
630
+ 0,
631
+ 0,
632
+ ],
633
+ type='GlobalRotScaleTransImage'),
634
+ dict(
635
+ keys=[
636
+ 'img',
637
+ 'gt_bboxes',
638
+ 'gt_bboxes_labels',
639
+ 'attr_labels',
640
+ 'gt_bboxes_3d',
641
+ 'gt_labels_3d',
642
+ 'centers_2d',
643
+ 'depths',
644
+ ],
645
+ type='Pack3DDetInputs'),
646
+ ]
647
+ val_cfg = dict()
648
+ val_dataloader = dict(
649
+ batch_size=1,
650
+ dataset=dict(
651
+ ann_file='nuscenes_infos_val.pkl',
652
+ backend_args=None,
653
+ box_type_3d='LiDAR',
654
+ data_prefix=dict(
655
+ CAM_BACK='samples/CAM_BACK',
656
+ CAM_BACK_LEFT='samples/CAM_BACK_LEFT',
657
+ CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
658
+ CAM_FRONT='samples/CAM_FRONT',
659
+ CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
660
+ CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
661
+ img='',
662
+ pts='samples/LIDAR_TOP',
663
+ sweeps='sweeps/LIDAR_TOP'),
664
+ data_root='data/nuscenes/',
665
+ metainfo=dict(classes=[
666
+ 'car',
667
+ 'truck',
668
+ 'construction_vehicle',
669
+ 'bus',
670
+ 'trailer',
671
+ 'barrier',
672
+ 'motorcycle',
673
+ 'bicycle',
674
+ 'pedestrian',
675
+ 'traffic_cone',
676
+ ]),
677
+ modality=dict(use_camera=True, use_lidar=True),
678
+ pipeline=[
679
+ dict(
680
+ backend_args=None,
681
+ to_float32=True,
682
+ type='LoadMultiViewImageFromFiles'),
683
+ dict(
684
+ data_aug_conf=dict(
685
+ H=900,
686
+ W=1600,
687
+ bot_pct_lim=(
688
+ 0.0,
689
+ 0.0,
690
+ ),
691
+ final_dim=(
692
+ 320,
693
+ 800,
694
+ ),
695
+ rand_flip=True,
696
+ resize_lim=(
697
+ 0.47,
698
+ 0.625,
699
+ ),
700
+ rot_lim=(
701
+ 0.0,
702
+ 0.0,
703
+ )),
704
+ training=False,
705
+ type='ResizeCropFlipImage'),
706
+ dict(keys=[
707
+ 'img',
708
+ ], type='Pack3DDetInputs'),
709
+ ],
710
+ test_mode=True,
711
+ type='NuScenesDataset',
712
+ use_valid_flag=True),
713
+ drop_last=False,
714
+ num_workers=1,
715
+ persistent_workers=True,
716
+ sampler=dict(shuffle=False, type='DefaultSampler'))
717
+ val_evaluator = dict(
718
+ ann_file='data/nuscenes/nuscenes_infos_val.pkl',
719
+ backend_args=None,
720
+ data_root='data/nuscenes/',
721
+ metric='bbox',
722
+ type='NuScenesMetric')
723
+ vis_backends = [
724
+ dict(type='LocalVisBackend'),
725
+ ]
726
+ visualizer = dict(
727
+ name='visualizer',
728
+ type='Det3DLocalVisualizer',
729
+ vis_backends=[
730
+ dict(type='LocalVisBackend'),
731
+ ])
732
+ voxel_size = [
733
+ 0.2,
734
+ 0.2,
735
+ 8,
736
+ ]
737
+ work_dir = 'work_dirs/detr3d_nuscenes'