Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import warnings | |
| from typing import Callable, List, Optional, Union, Dict, Any | |
| import PIL.Image | |
| import trimesh | |
| import rembg | |
| import torch | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| from diffusers.utils import BaseOutput | |
| import craftsman | |
| from craftsman.utils.config import ExperimentConfig, load_config | |
| class MeshPipelineOutput(BaseOutput): | |
| """ | |
| Output class for image pipelines. | |
| Args: | |
| images (`List[trimesh.Trimesh]` or `np.ndarray`) | |
| List of denoised trimesh meshes of length `batch_size` or a tuple of NumPy array with shape `((vertices, 3), (faces, 3)) of length `batch_size``. | |
| """ | |
| meshes: Union[List[trimesh.Trimesh], np.ndarray] | |
| class CraftsManPipeline(): | |
| """ | |
| Pipeline for text-guided image to image generation using CraftsMan(https://github.com/wyysf-98/CraftsMan). | |
| Args: | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Feature extractor for image pre-processing before being encoded. | |
| """ | |
| def __init__( | |
| self, | |
| device: str, | |
| cfg: ExperimentConfig, | |
| system, | |
| ): | |
| self.device = device | |
| self.cfg = cfg | |
| self.system = system | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
| r""" | |
| A simpler version that instantiate a PyTorch diffusion pipeline from pretrained pipeline weights. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| """ | |
| # 1. Download the checkpoints and configs | |
| # use snapshot download here to get it working from from_pretrained | |
| if not os.path.isdir(pretrained_model_name_or_path): | |
| ckpt_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="model.ckpt", repo_type="model") | |
| config_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="config.yaml", repo_type="model") | |
| else: | |
| ckpt_path = os.path.join(pretrained_model_name_or_path, "model.ckpt") | |
| config_path = os.path.join(pretrained_model_name_or_path, "config.yaml") | |
| # 2. Load the model | |
| device = kwargs.get("device", "cuda" if torch.cuda.is_available() else "cpu") | |
| cfg = load_config(config_path) | |
| system = craftsman.find(cfg.system_type)(cfg.system) | |
| print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") | |
| ckpt = torch.load(ckpt_path, map_location=torch.device('cpu')) | |
| system.load_state_dict( | |
| ckpt["state_dict"] if "state_dict" in ckpt else ckpt, | |
| ) | |
| system = system.to(device).eval() | |
| return cls( | |
| device=device, | |
| cfg=cfg, | |
| system=system | |
| ) | |
| def check_inputs( | |
| self, | |
| image, | |
| ): | |
| r""" | |
| Check if the inputs are valid. Raise an error if not. | |
| """ | |
| if isinstance(image, str): | |
| assert os.path.isfile(image) or image.startswith("http"), "Input image must be a valid URL or a file path." | |
| elif isinstance(image, (torch.Tensor, PIL.Image.Image)): | |
| raise ValueError("Input image must be a `torch.Tensor` or `PIL.Image.Image`.") | |
| def preprocess_image( | |
| self, | |
| images_pil: List[PIL.Image.Image], | |
| force: bool = False, | |
| background_color: List[int] = [255, 255, 255], | |
| foreground_ratio: float = 1.0, | |
| ): | |
| r""" | |
| Crop and remote the background of the input image | |
| Args: | |
| image_pil (`List[PIL.Image.Image]`): | |
| List of `PIL.Image.Image` objects representing the input image. | |
| force (`bool`, *optional*, defaults to `False`): | |
| Whether to force remove the background even if the image has an alpha channel. | |
| Returns: | |
| `List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image. | |
| """ | |
| preprocessed_images = [] | |
| for i in range(len(images_pil)): | |
| image = images_pil[i] | |
| do_remove = True | |
| if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
| # explain why current do not rm bg | |
| print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
| background = PIL.Image.new("RGBA", image.size, (*background_color, 0)) | |
| image = PIL.Image.alpha_composite(background, image) | |
| do_remove = False | |
| do_remove = do_remove or force | |
| if do_remove: | |
| image = rembg.remove(image) | |
| # calculate the min bbox of the image | |
| alpha = image.split()[-1] | |
| image = image.crop(alpha.getbbox()) | |
| # Calculate the new size after rescaling | |
| new_size = tuple(int(dim * foreground_ratio) for dim in image.size) | |
| # Resize the image while maintaining the aspect ratio | |
| resized_image = image.resize(new_size) | |
| # Create a new image with the original size and white background | |
| padded_image = PIL.Image.new("RGBA", image.size, (*background_color, 0)) | |
| paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2) | |
| padded_image.paste(resized_image, paste_position) | |
| # expand image to 1:1 | |
| width, height = padded_image.size | |
| if width == height: | |
| preprocessed_images.append(padded_image) | |
| continue | |
| new_size = (max(width, height), max(width, height)) | |
| new_image = PIL.Image.new("RGBA", new_size, (*background_color, 1)) | |
| paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
| new_image.paste(padded_image, paste_position) | |
| preprocessed_images.append(new_image) | |
| return preprocessed_images | |
| def __call__( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image, str], | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| eta: float = 0.0, | |
| num_meshes_per_prompt: Optional[int] = 1, | |
| output_type: Optional[str] = "trimesh", | |
| return_dict: bool = True, | |
| seed: Optional[int] = None, | |
| force_remove_background: bool = False, | |
| background_color: List[int] = [255, 255, 255], | |
| foreground_ratio: float = 0.95, | |
| mc_depth: int = 8, | |
| only_max_component: bool = False, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch. The image will be encoded to its CLIP/DINO-v2 embedding | |
| which the DiT will be conditioned on. | |
| num_inference_steps (`int`, *optional*, defaults to 20): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 10.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| The eta parameter as defined in [DDIM](https://arxiv.org/abs/2010.02502). `eta` is a parameter that | |
| controls the amount of noise added to the latent space. It is only used with the DDIM scheduler and | |
| will be ignored for other schedulers. `eta` should be between [0, 1]. | |
| num_meshes_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of meshes to generate per prompt. | |
| output_type (`str`, *optional*, defaults to `"trimesh"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image`, `latents` or `np.array of v and f`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| seed (`int`, *optional*, defaults to `None`): | |
| Seed for the random number generator. Setting a seed will ensure reproducibility. | |
| force_remove_background (`bool`, *optional*, defaults to `False`): | |
| Whether to force remove the background even if the image has an alpha channel. | |
| foreground_ratio (`float`, *optional*, defaults to 1.0): | |
| The ratio of the foreground in the image. The foreground is the part of the image that is not the | |
| background. The foreground is resized to the size of the background image while maintaining the aspect | |
| ratio. The background is filled with black color. The foreground ratio should be between [0, 1]. | |
| mc_depth (`int`, *optional*, defaults to 8): | |
| The resolution of the Marching Cubes algorithm. The resolution is the number of cubes in the x, y, and z. | |
| 8 means 2^8 = 256 cubes in each dimension. The higher the resolution, the more detailed the mesh will be. | |
| only_max_component (`bool`, *optional*, defaults to `False`): | |
| Whether to only keep the largest connected component of the mesh. This is useful when the mesh has | |
| multiple components and only the largest one is needed. | |
| Examples: | |
| Returns: | |
| [`~MeshPipelineOutput`] or `tuple`: [`~MeshPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. | |
| When returning a tuple, the first element is a list with the generated meshes. | |
| """ | |
| # 0. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| image=image, | |
| ) | |
| # 1. Define call parameters | |
| if isinstance(image, torch.Tensor): | |
| batch_size = image.shape[0] | |
| elif isinstance(image, PIL.Image.Image) or isinstance(image, str): | |
| batch_size = 1 | |
| do_classifier_free_guidance = guidance_scale != 1.0 | |
| # 2. Preprocess input image | |
| if isinstance(image, torch.Tensor): | |
| images_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] | |
| elif isinstance(image, PIL.Image.Image): | |
| images_pil = [image] | |
| elif isinstance(image, str): | |
| if image.startswith("http"): | |
| import requests | |
| images_pil = [PIL.Image.open(requests.get(image, stream=True).raw)] | |
| else: | |
| images_pil = [PIL.Image.open(image)] | |
| images_pil = self.preprocess_image( | |
| images_pil, | |
| force=force_remove_background, | |
| background_color=background_color, | |
| foreground_ratio=foreground_ratio | |
| ) | |
| # 3. Inference | |
| latents = self.system.sample( | |
| {'image': images_pil}, | |
| sample_times = num_meshes_per_prompt, | |
| steps = num_inference_steps, | |
| guidance_scale = guidance_scale, | |
| eta = eta, | |
| seed = seed | |
| ) | |
| # 4. Post-processing | |
| if not output_type == "latent": | |
| mesh = [] | |
| for i, cur_latents in enumerate(latents): | |
| print(f"Generating mesh {i+1}/{num_meshes_per_prompt}") | |
| mesh_v_f, has_surface = self.system.shape_model.extract_geometry( | |
| cur_latents, | |
| octree_depth=mc_depth, | |
| extract_mesh_func="mc" | |
| ) | |
| if output_type == "trimesh": | |
| import trimesh | |
| cur_mesh = trimesh.Trimesh(vertices=mesh_v_f[0][0], faces=mesh_v_f[0][1]) | |
| if only_max_component: | |
| components = cur_mesh.split(only_watertight=False) | |
| bbox = [] | |
| for c in components: | |
| bbmin = c.vertices.min(0) | |
| bbmax = c.vertices.max(0) | |
| bbox.append((bbmax - bbmin).max()) | |
| max_component = np.argmax(bbox) | |
| cur_mesh = components[max_component] | |
| mesh.append(cur_mesh) | |
| elif output_type == "np": | |
| mesh.append(mesh_v_f[0]) | |
| else: | |
| mesh = latents | |
| if not return_dict: | |
| return tuple(mesh) | |
| return MeshPipelineOutput(meshes=mesh) |