Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import argparse | |
| import os | |
| import json | |
| import torch | |
| import sys | |
| import base64 | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| import PIL | |
| from PIL import Image | |
| from collections import OrderedDict | |
| import trimesh | |
| import rembg | |
| import requests | |
| import gradio as gr | |
| from typing import Any | |
| proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
| sys.path.append(os.path.join(proj_dir)) | |
| import tempfile | |
| import craftsman | |
| from craftsman.utils.config import ExperimentConfig, load_config | |
| _TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' | |
| _DESCRIPTION = ''' | |
| <div> | |
| <span style="color: red;">Important: If you have your own data and want to collaborate, we are welcom to any contact.</span> | |
| <div> | |
| Select or upload a image, then just click 'Generate'. | |
| <br> | |
| By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, | |
| then a multi-view normal enhanced image generation model is used to refine the mesh. | |
| We provide the coarse 3D diffusion part here. | |
| <br> | |
| If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! | |
| <a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> | |
| <br> | |
| *If you have your own multi-view images, you can directly upload it. | |
| </div> | |
| ''' | |
| _CITE_ = r""" | |
| --- | |
| π **Citation** | |
| If you find our work useful for your research or applications, please cite using this bibtex: | |
| ```bibtex | |
| @article{li2024craftsman, | |
| author = {Weiyu Li and Jiarui Liu and Hongyu Yan and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, | |
| title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, | |
| journal = {arXiv preprint arXiv:2405.14979}, | |
| year = {2024}, | |
| } | |
| ``` | |
| π€ **Acknowledgements** | |
| We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. | |
| π **License** | |
| CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. | |
| π§ **Contact** | |
| If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>. | |
| """ | |
| model = None | |
| cached_dir = None | |
| def check_input_image(input_image): | |
| if input_image is None: | |
| raise gr.Error("No image uploaded!") | |
| class RMBG(object): | |
| def __init__(self): | |
| pass | |
| def rmbg_rembg(self, input_image, background_color): | |
| def _rembg_remove( | |
| image: PIL.Image.Image, | |
| rembg_session = None, | |
| force: bool = False, | |
| **rembg_kwargs, | |
| ) -> PIL.Image.Image: | |
| do_remove = True | |
| if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
| # explain why current do not rm bg | |
| print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
| background = Image.new("RGBA", image.size, (*background_color, 0)) | |
| image = Image.alpha_composite(background, image) | |
| do_remove = False | |
| do_remove = do_remove or force | |
| if do_remove: | |
| image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
| # calculate the min bbox of the image | |
| alpha = image.split()[-1] | |
| image = image.crop(alpha.getbbox()) | |
| return image | |
| return _rembg_remove(input_image, None, force_remove=True) | |
| def run(self, rm_type, image_file, foreground_ratio, background_choice, background_color=(255, 255, 255)): | |
| image = Image.open(image_file) | |
| if "Original" in background_choice: | |
| return image | |
| else: | |
| if background_choice == "Alpha as mask": | |
| alpha = image.split()[-1] | |
| image = image.crop(alpha.getbbox()) | |
| elif "Remove" in background_choice: | |
| if rm_type.upper() == "REMBG": | |
| image = self.rmbg_rembg(image, background_color=background_color) | |
| else: | |
| return -1 | |
| # Calculate the new size after rescaling | |
| new_size = tuple(int(dim * foreground_ratio) for dim in image.size) | |
| # Resize the image while maintaining the aspect ratio | |
| resized_image = image.resize(new_size) | |
| # Create a new image with the original size and white background | |
| padded_image = PIL.Image.new("RGBA", image.size, (*background_color, 0)) | |
| paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2) | |
| padded_image.paste(resized_image, paste_position) | |
| # expand image to 1:1 | |
| width, height = padded_image.size | |
| if width == height: | |
| return padded_image | |
| new_size = (max(width, height), max(width, height)) | |
| image = PIL.Image.new("RGBA", new_size, (*background_color, 1)) | |
| paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
| image.paste(padded_image, paste_position) | |
| filepath = tempfile.NamedTemporaryFile(suffix=f".png", delete=False).name | |
| image.save(filepath) | |
| return filepath | |
| # @spaces.GPU | |
| def image2mesh(image: Any, | |
| more: bool = False, | |
| scheluder_name: str ="DDIMScheduler", | |
| guidance_scale: int = 7.5, | |
| steps: int = 50, | |
| seed: int = 4, | |
| target_face_count: int = 2000, | |
| octree_depth: int = 7): | |
| # global rmbg | |
| # processed_image = rmbg.run(rm_type, image, foreground_ratio, background_choice) | |
| processed_image = Image.open(image) | |
| sample_inputs = { | |
| "image": [ | |
| processed_image | |
| ] | |
| } | |
| global model | |
| latents = model.sample( | |
| sample_inputs, | |
| sample_times=1, | |
| steps=steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed | |
| )[0] | |
| # decode the latents to mesh | |
| box_v = 1.1 | |
| mesh_outputs, _ = model.shape_model.extract_geometry( | |
| latents, | |
| bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], | |
| octree_depth=octree_depth | |
| ) | |
| assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" | |
| mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) | |
| # filepath = f"{cached_dir}/{time.time()}.obj" | |
| filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name | |
| mesh.export(filepath, include_normals=True) | |
| if 'Remesh' in more: | |
| remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name | |
| print("Remeshing with Instant Meshes...") | |
| command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" | |
| os.system(command) | |
| filepath = remeshed_filepath | |
| return filepath | |
| def mesh2texture(mesh_file, image_file): | |
| headers = {'Content-Type': 'application/json'} | |
| server_url = "114.249.238.184:34119" | |
| with open(image_file, 'rb') as f: | |
| image_bytes = f.read() | |
| with open(mesh_file, 'rb') as f: | |
| mesh_bytes = f.read() | |
| request = { | |
| 'png_base64_image': base64.b64encode(image_bytes).decode('utf-8'), | |
| 'glb_base64_mesh': base64.b64encode(mesh_bytes).decode('utf-8'), | |
| } | |
| response = requests.post( | |
| url=f"http://{server_url}/generate_texture", | |
| headers=headers, | |
| data=json.dumps(request), | |
| ).json() | |
| mesh_bytes = base64.b64decode(response['glb_base64_mesh']) | |
| filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name | |
| with open(filepath, 'wb') as f: | |
| f.write(mesh_bytes) | |
| return filepath | |
| if __name__=="__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model_path", type=str, default="", help="Path to the object file",) | |
| parser.add_argument("--cached_dir", type=str, default="") | |
| parser.add_argument("--device", type=int, default=0) | |
| args = parser.parse_args() | |
| cached_dir = args.cached_dir | |
| if cached_dir != "": | |
| os.makedirs(args.cached_dir, exist_ok=True) | |
| device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") | |
| print(f"using device: {device}") | |
| # for input image | |
| background_choice = OrderedDict({ | |
| "Alpha as Mask": "Alpha as Mask", | |
| "Auto Remove Background": "Auto Remove Background", | |
| "Original Image": "Original Image", | |
| }) | |
| # for 3D latent set diffusion | |
| if args.model_path == "": | |
| ckpt_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="model.ckpt", repo_type="model") | |
| config_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="config.yaml", repo_type="model") | |
| else: | |
| ckpt_path = os.path.join(args.model_path, "model.ckpt") | |
| config_path = os.path.join(args.model_path, "config.yaml") | |
| scheluder_dict = OrderedDict({ | |
| "DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', | |
| # "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet | |
| # "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet | |
| }) | |
| # main GUI | |
| custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
| button_secondary_background_fill="*neutral_100", | |
| button_secondary_background_fill_hover="*neutral_200") | |
| custom_css = '''#disp_image { | |
| text-align: center; /* Horizontally center the content */ | |
| }''' | |
| with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown('# ' + _TITLE) | |
| gr.Markdown(_DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Column(): | |
| # input image | |
| with gr.Row(): | |
| image_input = gr.Image( | |
| label="Image Input", | |
| image_mode="RGBA", | |
| sources="upload", | |
| type="filepath", | |
| ) | |
| run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
| with gr.Row(): | |
| gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''') | |
| with gr.Row(): | |
| seed = gr.Number(42, label='Seed', show_label=True) | |
| more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False) | |
| target_face_count = gr.Number(2000, label='Target Face Count', show_label=True) | |
| with gr.Accordion('Advanced options', open=False): | |
| with gr.Row(): | |
| background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) | |
| rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) | |
| foreground_ratio = gr.Slider(label="Foreground Ratio", value=0.95, minimum=0.5, maximum=1.0, step=0.01) | |
| with gr.Row(): | |
| guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0) | |
| steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") | |
| with gr.Row(): | |
| scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) | |
| octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[os.path.join("./examples", i) for i in os.listdir("./examples")], | |
| inputs=[image_input], | |
| examples_per_page=8 | |
| ) | |
| with gr.Column(scale=4): | |
| with gr.Row(): | |
| output_model_obj = gr.Model3D( | |
| label="Output Model (GLB Format)", | |
| camera_position=(90.0, 90.0, 3.5), | |
| interactive=False, | |
| ) | |
| with gr.Row(): | |
| output_model_tex = gr.Model3D( | |
| label="Output Textured Model (GLB Format)", | |
| camera_position=(90.0, 90.0, 3.5), | |
| interactive=False, | |
| ) | |
| # with gr.Row(): | |
| # gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') | |
| gr.Markdown(_CITE_) | |
| # outputs = [output_model_obj] | |
| # outputs_tex = [output_model_tex] | |
| rmbg = RMBG() | |
| # model = load_model(ckpt_path, config_path, device) | |
| cfg = load_config(config_path) | |
| model = craftsman.find(cfg.system_type)(cfg.system) | |
| print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") | |
| ckpt = torch.load(ckpt_path, map_location=torch.device('cpu')) | |
| model.load_state_dict( | |
| ckpt["state_dict"] if "state_dict" in ckpt else ckpt, | |
| ) | |
| model = model.to(device).eval() | |
| run_btn.click(fn=check_input_image, inputs=[image_input] | |
| ).success( | |
| fn=rmbg.run, | |
| inputs=[rmbg_type, image_input, foreground_ratio, background_choice], | |
| outputs=[image_input] | |
| ).success( | |
| fn=image2mesh, | |
| inputs=[image_input, more, scheduler, guidance_scale, steps, seed, target_face_count, octree_depth], | |
| outputs=[output_model_obj], | |
| api_name="generate_img2obj" | |
| ).success( | |
| fn=mesh2texture, | |
| inputs=[output_model_obj, image_input], | |
| outputs=[output_model_tex], | |
| api_name="generate_obj2tex" | |
| ) | |
| demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |