Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import os | |
| import json | |
| import torch | |
| import sys | |
| import time | |
| import importlib | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| from huggingface_hub import hf_hub_download | |
| from collections import OrderedDict | |
| import trimesh | |
| from einops import repeat, rearrange | |
| import pytorch_lightning as pl | |
| from typing import Dict, Optional, Tuple, List | |
| import gradio as gr | |
| proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
| sys.path.append(os.path.join(proj_dir)) | |
| import craftsman | |
| from craftsman.systems.base import BaseSystem | |
| from craftsman.utils.config import ExperimentConfig, load_config | |
| from apps.utils import * | |
| from apps.mv_models import GenMVImage | |
| _TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' | |
| _DESCRIPTION = ''' | |
| <div> | |
| Select or upload a image, then just click 'Generate'. | |
| <br> | |
| By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, | |
| then a multi-view normal enhanced image generation model is used to refine the mesh. | |
| We provide the coarse 3D diffusion part here. | |
| <br> | |
| If you found Crafts is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! | |
| <a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> | |
| <br> | |
| *please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh. | |
| <br> | |
| *If you have your own multi-view images, you can directly upload it. | |
| </div> | |
| ''' | |
| _CITE_ = r""" | |
| --- | |
| π **Citation** | |
| If you find our work useful for your research or applications, please cite using this bibtex: | |
| ```bibtex | |
| @article{craftsman, | |
| author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, | |
| title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, | |
| journal = {arxiv:xxx}, | |
| year = {2024}, | |
| } | |
| ``` | |
| π€ **Acknowledgements** | |
| We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. | |
| π **License** | |
| CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. | |
| π§ **Contact** | |
| If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>. | |
| """ | |
| model = None | |
| cached_dir = None | |
| def image2mesh(view_front: np.ndarray, | |
| view_right: np.ndarray, | |
| view_back: np.ndarray, | |
| view_left: np.ndarray, | |
| more: bool = False, | |
| scheluder_name: str ="DDIMScheduler", | |
| guidance_scale: int = 7.5, | |
| seed: int = 4, | |
| octree_depth: int = 7): | |
| sample_inputs = { | |
| "mvimages": [[ | |
| Image.fromarray(view_front), | |
| Image.fromarray(view_right), | |
| Image.fromarray(view_back), | |
| Image.fromarray(view_left) | |
| ]] | |
| } | |
| global model | |
| latents = model.sample( | |
| sample_inputs, | |
| sample_times=1, | |
| guidance_scale=guidance_scale, | |
| return_intermediates=False, | |
| seed=seed | |
| )[0] | |
| # decode the latents to mesh | |
| box_v = 1.1 | |
| mesh_outputs, _ = model.shape_model.extract_geometry( | |
| latents, | |
| bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], | |
| octree_depth=octree_depth | |
| ) | |
| assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" | |
| mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) | |
| filepath = f"{cached_dir}/{time.time()}.obj" | |
| mesh.export(filepath, include_normals=True) | |
| if 'Remesh' in more: | |
| print("Remeshing with Instant Meshes...") | |
| target_face_count = int(len(mesh.faces)/10) | |
| command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -d -S 0 -r 6 -p 6 -o {filepath.replace('.obj', '_remeshed.obj')}" | |
| os.system(command) | |
| filepath = filepath.replace('.obj', '_remeshed.obj') | |
| return filepath | |
| if __name__=="__main__": | |
| parser = argparse.ArgumentParser() | |
| # parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",) | |
| parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") | |
| parser.add_argument("--device", type=int, default=0) | |
| args = parser.parse_args() | |
| cached_dir = args.cached_dir | |
| os.makedirs(args.cached_dir, exist_ok=True) | |
| device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") | |
| print(f"using device: {device}") | |
| # for multi-view images generation | |
| background_choice = OrderedDict({ | |
| "Alpha as Mask": "Alpha as Mask", | |
| "Auto Remove Background": "Auto Remove Background", | |
| "Original Image": "Original Image", | |
| }) | |
| mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"] | |
| # for 3D latent set diffusion | |
| # for 3D latent set diffusion | |
| ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model") | |
| config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model") | |
| scheluder_dict = OrderedDict({ | |
| "DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', | |
| # "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet | |
| # "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet | |
| }) | |
| # main GUI | |
| custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
| button_secondary_background_fill="*neutral_100", | |
| button_secondary_background_fill_hover="*neutral_200") | |
| custom_css = '''#disp_image { | |
| text-align: center; /* Horizontally center the content */ | |
| }''' | |
| with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown('# ' + _TITLE) | |
| gr.Markdown(_DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Row(): | |
| image_input = gr.Image( | |
| label="Image Input", | |
| image_mode="RGBA", | |
| sources="upload", | |
| type="pil", | |
| ) | |
| with gr.Row(): | |
| text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False) | |
| with gr.Row(): | |
| gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''') | |
| with gr.Row(): | |
| seed = gr.Number(42, label='Seed', show_label=True) | |
| more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False) | |
| # remesh = gr.Checkbox(value=False, label='Remesh') | |
| # symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False) | |
| run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], | |
| inputs=[image_input], | |
| examples_per_page=8 | |
| ) | |
| with gr.Column(scale=4): | |
| with gr.Row(): | |
| output_model_obj = gr.Model3D( | |
| label="Output Model (OBJ Format)", | |
| camera_position=(90.0, 90.0, 3.5), | |
| interactive=False, | |
| ) | |
| with gr.Row(): | |
| view_front = gr.Image(label="Front", interactive=True, show_label=True) | |
| view_right = gr.Image(label="Right", interactive=True, show_label=True) | |
| view_back = gr.Image(label="Back", interactive=True, show_label=True) | |
| view_left = gr.Image(label="Left", interactive=True, show_label=True) | |
| with gr.Accordion('Advanced options', open=False): | |
| with gr.Row(equal_height=True): | |
| run_mv_btn = gr.Button('Only Generate 2D', interactive=True) | |
| run_3d_btn = gr.Button('Only Generate 3D', interactive=True) | |
| with gr.Accordion('Advanced options (2D)', open=False): | |
| with gr.Row(): | |
| crop_size = gr.Number(224, label='Crop size') | |
| mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list) | |
| with gr.Row(): | |
| foreground_ratio = gr.Slider( | |
| label="Foreground Ratio", | |
| minimum=0.5, | |
| maximum=1.0, | |
| value=1.0, | |
| step=0.05, | |
| ) | |
| with gr.Row(): | |
| background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) | |
| rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) | |
| backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) | |
| with gr.Row(): | |
| mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale") | |
| mvimg_steps = gr.Number(value=50, minimum=20, maximum=100, label="2D Sample Steps", precision=0) | |
| with gr.Accordion('Advanced options (3D)', open=False): | |
| with gr.Row(): | |
| guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0) | |
| steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0) | |
| with gr.Row(): | |
| scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) | |
| octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) | |
| gr.Markdown(_CITE_) | |
| outputs = [output_model_obj] | |
| rmbg = RMBG(device) | |
| gen_mvimg = GenMVImage(device) | |
| model = load_model(ckpt_path, config_path, device) | |
| run_btn.click(fn=check_input_image, inputs=[image_input] | |
| ).success( | |
| fn=rmbg.run, | |
| inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color], | |
| outputs=[image_input] | |
| ).success( | |
| fn=gen_mvimg.run, | |
| inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps], | |
| outputs=[view_front, view_right, view_back, view_left] | |
| ).success( | |
| fn=image2mesh, | |
| inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
| outputs=outputs, | |
| api_name="generate_img2obj") | |
| run_mv_btn.click(fn=gen_mvimg.run, | |
| inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps], | |
| outputs=[view_front, view_right, view_back, view_left] | |
| ) | |
| run_3d_btn.click(fn=image2mesh, | |
| inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
| outputs=outputs, | |
| api_name="generate_img2obj") | |
| demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |