Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalControlnetMixin | |
| from diffusers.utils import BaseOutput, logging | |
| # from diffusers.models.attention_processor import ( | |
| from models_diffusers.attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| ) | |
| from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_utils import ModelMixin | |
| # from diffusers.models.unet_3d_blocks import get_down_block, get_up_block, UNetMidBlockSpatioTemporal | |
| from models_diffusers.unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block | |
| from diffusers.models import UNetSpatioTemporalConditionModel | |
| from einops import rearrange | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class ControlNetOutput(BaseOutput): | |
| """ | |
| The output of [`ControlNetModel`]. | |
| Args: | |
| down_block_res_samples (`tuple[torch.Tensor]`): | |
| A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
| be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
| used to condition the original UNet's downsampling activations. | |
| mid_down_block_re_sample (`torch.Tensor`): | |
| The activation of the midde block (the lowest sample resolution). Each tensor should be of shape | |
| `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
| Output can be used to condition the original UNet's middle block activation. | |
| """ | |
| down_block_res_samples: Tuple[torch.Tensor] | |
| mid_block_res_sample: torch.Tensor | |
| class ControlNetConditioningEmbeddingSVD(nn.Module): | |
| """ | |
| Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
| [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
| training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
| convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
| (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
| model) to encode image-space conditions ... into feature maps ..." | |
| """ | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int, | |
| conditioning_channels: int = 3, | |
| block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), | |
| with_id_feature: bool = False, | |
| feature_channels: int = 160, | |
| feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256), | |
| ): | |
| super().__init__() | |
| self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) | |
| self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
| self.conv_out = zero_module( | |
| nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
| ) | |
| self.with_id_feature = with_id_feature | |
| def forward(self, conditioning, point_embedding=None, point_tracks=None): | |
| #this seeems appropriate? idk if i should be applying a more complex setup to handle the frames | |
| #combine batch and frames dimensions | |
| batch_size, frames, channels, height, width = conditioning.size() | |
| conditioning = conditioning.view(batch_size * frames, channels, height, width) | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| assert not self.with_id_feature | |
| return embedding | |
| class ControlNetSVDModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin): | |
| r""" | |
| A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample | |
| shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| addition_time_embed_dim: (`int`, defaults to 256): | |
| Dimension to to encode the additional time ids. | |
| projection_class_embeddings_input_dim (`int`, defaults to 768): | |
| The dimension of the projection of encoded `added_time_ids`. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
| The dimension of the cross attention features. | |
| transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): | |
| The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
| [`~models.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], | |
| [`~models.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. | |
| num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): | |
| The number of attention heads. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 8, | |
| out_channels: int = 4, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "DownBlockSpatioTemporal", | |
| ), | |
| up_block_types: Tuple[str] = ( | |
| "UpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporal", | |
| ), | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| addition_time_embed_dim: int = 256, | |
| projection_class_embeddings_input_dim: int = 768, | |
| layers_per_block: Union[int, Tuple[int]] = 2, | |
| cross_attention_dim: Union[int, Tuple[int]] = 1024, | |
| transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
| num_attention_heads: Union[int, Tuple[int]] = (5, 10, 10, 20), | |
| num_frames: int = 14, | |
| conditioning_channels: int = 3, | |
| conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
| # NOTE: adapter for dift feature | |
| with_id_feature: bool = False, | |
| feature_channels: int = 160, | |
| feature_out_channels: Tuple[int, ...] = (160, 160, 256, 256), | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| print("layers per block is", layers_per_block) | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=3, | |
| padding=1, | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) | |
| self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.controlnet_down_blocks = nn.ModuleList([]) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| if isinstance(cross_attention_dim, int): | |
| cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
| if isinstance(layers_per_block, int): | |
| layers_per_block = [layers_per_block] * len(down_block_types) | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
| blocks_time_embed_dim = time_embed_dim | |
| self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSVD( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=conditioning_embedding_out_channels, | |
| conditioning_channels=conditioning_channels, | |
| # optionally with point feature for conditioning | |
| with_id_feature=with_id_feature, | |
| feature_channels=feature_channels, | |
| feature_out_channels=feature_out_channels, | |
| ) | |
| # down | |
| output_channel = block_out_channels[0] | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block[i], | |
| transformer_layers_per_block=transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=blocks_time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=1e-5, | |
| cross_attention_dim=cross_attention_dim[i], | |
| num_attention_heads=num_attention_heads[i], | |
| resnet_act_fn="silu", | |
| ) | |
| self.down_blocks.append(down_block) | |
| for _ in range(layers_per_block[i]): | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| if not is_final_block: | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| # mid | |
| mid_block_channel = block_out_channels[-1] | |
| controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_mid_block = controlnet_block | |
| self.mid_block = UNetMidBlockSpatioTemporal( | |
| block_out_channels[-1], | |
| temb_channels=blocks_time_embed_dim, | |
| transformer_layers_per_block=transformer_layers_per_block[-1], | |
| cross_attention_dim=cross_attention_dim[-1], | |
| num_attention_heads=num_attention_heads[-1], | |
| ) | |
| # # out | |
| # self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) | |
| # self.conv_act = nn.SiLU() | |
| # self.conv_out = nn.Conv2d( | |
| # block_out_channels[0], | |
| # out_channels, | |
| # kernel_size=3, | |
| # padding=1, | |
| # ) | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| # Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking | |
| def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
| """ | |
| Sets the attention processor to use [feed forward | |
| chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
| Parameters: | |
| chunk_size (`int`, *optional*): | |
| The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
| over each tensor of dim=`dim`. | |
| dim (`int`, *optional*, defaults to `0`): | |
| The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
| or dim=1 (sequence length). | |
| """ | |
| if dim not in [0, 1]: | |
| raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
| # By default chunk size is 1 | |
| chunk_size = chunk_size or 1 | |
| def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
| if hasattr(module, "set_chunk_feed_forward"): | |
| module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
| for child in module.children(): | |
| fn_recursive_feed_forward(child, chunk_size, dim) | |
| for module in self.children(): | |
| fn_recursive_feed_forward(module, chunk_size, dim) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| added_time_ids: torch.Tensor, | |
| controlnet_cond: torch.FloatTensor = None, | |
| point_embedding: torch.FloatTensor = None, | |
| point_tracks: torch.FloatTensor = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| guess_mode: bool = False, | |
| conditioning_scale: float = 1.0, | |
| ) -> Union[ControlNetOutput, Tuple]: | |
| r""" | |
| The [`UNetSpatioTemporalConditionModel`] forward method. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
| timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.FloatTensor`): | |
| The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
| added_time_ids: (`torch.FloatTensor`): | |
| The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
| embeddings and added to the time embeddings. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
| If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise | |
| a `tuple` is returned where the first element is the sample tensor. | |
| """ | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| batch_size, num_frames = sample.shape[:2] | |
| timesteps = timesteps.expand(batch_size) | |
| t_emb = self.time_proj(timesteps) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb) | |
| time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((batch_size, -1)) | |
| time_embeds = time_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(time_embeds) | |
| emb = emb + aug_emb | |
| # Flatten the batch and frames dimensions | |
| # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
| sample = sample.flatten(0, 1) | |
| # Repeat the embeddings num_video_frames times | |
| # emb: [batch, channels] -> [batch * frames, channels] | |
| emb = emb.repeat_interleave(num_frames, dim=0) | |
| # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
| encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # controlnet cond | |
| if controlnet_cond != None: | |
| controlnet_cond = self.controlnet_cond_embedding(controlnet_cond, point_embedding=point_embedding, point_tracks=point_tracks) | |
| sample = sample + controlnet_cond | |
| image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| # print('has_cross_attention', type(downsample_block)) | |
| # models_diffusers.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| else: | |
| # print('no_cross_attention', type(downsample_block)) | |
| # models_diffusers.unet_3d_blocks.DownBlockSpatioTemporal | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample = self.mid_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return ControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
| ) | |
| def from_unet( | |
| cls, | |
| unet: UNetSpatioTemporalConditionModel, | |
| # controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
| load_weights_from_unet: bool = True, | |
| conditioning_channels: int = 3, | |
| with_id_feature: bool = False, | |
| ): | |
| r""" | |
| Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`]. | |
| Parameters: | |
| unet (`UNet2DConditionModel`): | |
| The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied | |
| where applicable. | |
| """ | |
| # transformer_layers_per_block = ( | |
| # unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 | |
| # ) | |
| # encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None | |
| # encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None | |
| # addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None | |
| # addition_time_embed_dim = ( | |
| # unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None | |
| # ) | |
| print(unet.config) | |
| controlnet = cls( | |
| in_channels=unet.config.in_channels, | |
| down_block_types=unet.config.down_block_types, | |
| block_out_channels=unet.config.block_out_channels, | |
| addition_time_embed_dim=unet.config.addition_time_embed_dim, | |
| transformer_layers_per_block=unet.config.transformer_layers_per_block, | |
| cross_attention_dim=unet.config.cross_attention_dim, | |
| num_attention_heads=unet.config.num_attention_heads, | |
| num_frames=unet.config.num_frames, | |
| sample_size=unet.config.sample_size, # Added based on the dict | |
| layers_per_block=unet.config.layers_per_block, | |
| projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, | |
| conditioning_channels = conditioning_channels, | |
| conditioning_embedding_out_channels = conditioning_embedding_out_channels, | |
| with_id_feature=with_id_feature, | |
| ) | |
| # controlnet rgb channel order ignored, set to not makea difference by default | |
| if load_weights_from_unet: | |
| controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
| controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
| controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
| # if controlnet.class_embedding: | |
| # controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) | |
| controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) | |
| controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) | |
| return controlnet | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False | |
| ): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor, _remove_lora=_remove_lora) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor, _remove_lora=True) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
| def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
| several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
| `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| # def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
| # if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): | |
| # module.gradient_checkpointing = value | |
| def zero_module(module): | |
| for p in module.parameters(): | |
| nn.init.zeros_(p) | |
| return module | |