Spaces:
Sleeping
Sleeping
Remove personal hotel email example and update hardware info to CPU
Browse files
README.md
CHANGED
|
@@ -12,7 +12,7 @@ models:
|
|
| 12 |
- wordcab/t5-small-email-summarizer
|
| 13 |
datasets:
|
| 14 |
- argilla/FinePersonas-Conversations-Email-Summaries
|
| 15 |
-
space_hardware: "
|
| 16 |
---
|
| 17 |
|
| 18 |
# T5 Email Summarizer - Interactive Demo v3
|
|
@@ -29,7 +29,7 @@ This Space provides an interactive demo of the [wordcab/t5-small-email-summarize
|
|
| 29 |
## Features
|
| 30 |
|
| 31 |
- π― **Dual-mode summarization**: Brief (1-2 sentences) or Full (detailed)
|
| 32 |
-
- π **Fast inference**:
|
| 33 |
- πͺ **Robust**: Handles typos, abbreviations, and informal language
|
| 34 |
- π **Auto-detect**: Automatically chooses brief or full based on email length
|
| 35 |
- π§ **Smart preprocessing**: General solution for title and unicode issues
|
|
|
|
| 12 |
- wordcab/t5-small-email-summarizer
|
| 13 |
datasets:
|
| 14 |
- argilla/FinePersonas-Conversations-Email-Summaries
|
| 15 |
+
space_hardware: "cpu-basic"
|
| 16 |
---
|
| 17 |
|
| 18 |
# T5 Email Summarizer - Interactive Demo v3
|
|
|
|
| 29 |
## Features
|
| 30 |
|
| 31 |
- π― **Dual-mode summarization**: Brief (1-2 sentences) or Full (detailed)
|
| 32 |
+
- π **Fast inference**: Quick processing even on CPU
|
| 33 |
- πͺ **Robust**: Handles typos, abbreviations, and informal language
|
| 34 |
- π **Auto-detect**: Automatically chooses brief or full based on email length
|
| 35 |
- π§ **Smart preprocessing**: General solution for title and unicode issues
|
app.py
CHANGED
|
@@ -236,24 +236,6 @@ def summarize_email(subject, body, summary_type, temperature=0.7, max_length=150
|
|
| 236 |
|
| 237 |
# Example emails
|
| 238 |
examples = [
|
| 239 |
-
[
|
| 240 |
-
"RE: Mia Saigon - Mr. Aleksandr Smechov & Mrs. Duong Thi Thu Nha (Ms. Yana) - 1642373580 - 26 August 2025",
|
| 241 |
-
"""Dear Mr. Aleks,
|
| 242 |
-
|
| 243 |
-
"Xin ChΓ o" from Mia Saigon Luxury Boutique Hotel!
|
| 244 |
-
|
| 245 |
-
Thank you very much for your continued support. We are truly delighted to welcome you and Ms. Yana for her upcoming birthday celebration.
|
| 246 |
-
|
| 247 |
-
Regarding your inquiry, we are pleased to inform you that we do provide in-room decoration services, flower bouquets, and birthday cakes, as detailed in the attached files.
|
| 248 |
-
|
| 249 |
-
Please kindly note that all services must be booked at least 48 hours (02 days) in advance and are subject to availability.
|
| 250 |
-
|
| 251 |
-
Best regards,
|
| 252 |
-
Mia Saigon Team""",
|
| 253 |
-
"Brief (1-2 sentences)",
|
| 254 |
-
0.7,
|
| 255 |
-
150
|
| 256 |
-
],
|
| 257 |
[
|
| 258 |
"Quarterly Budget Review Meeting",
|
| 259 |
"""Dear Team,
|
|
@@ -329,7 +311,7 @@ with gr.Blocks(title="T5 Email Summarizer", theme=gr.themes.Soft()) as demo:
|
|
| 329 |
|
| 330 |
π€ **Model:** [wordcab/t5-small-email-summarizer](https://huggingface.co/wordcab/t5-small-email-summarizer)
|
| 331 |
| π **Dataset:** [argilla/FinePersonas-Conversations-Email-Summaries](https://huggingface.co/datasets/argilla/FinePersonas-Conversations-Email-Summaries)
|
| 332 |
-
| π **
|
| 333 |
""")
|
| 334 |
|
| 335 |
with gr.Row():
|
|
@@ -417,7 +399,7 @@ with gr.Blocks(title="T5 Email Summarizer", theme=gr.themes.Soft()) as demo:
|
|
| 417 |
- **Dual-mode**: Get brief or detailed summaries on demand
|
| 418 |
- **Robust**: Handles typos, abbreviations, and informal language
|
| 419 |
- **Smart normalization**: Automatically handles titles (Mr., Dr., Prof., etc.)
|
| 420 |
-
- **Fast**: Processes emails
|
| 421 |
|
| 422 |
### π§ Preprocessing Features:
|
| 423 |
- **Title Normalization**: Converts "Mr." β "Mr", "Dr." β "Dr" to avoid tokenization issues
|
|
|
|
| 236 |
|
| 237 |
# Example emails
|
| 238 |
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
[
|
| 240 |
"Quarterly Budget Review Meeting",
|
| 241 |
"""Dear Team,
|
|
|
|
| 311 |
|
| 312 |
π€ **Model:** [wordcab/t5-small-email-summarizer](https://huggingface.co/wordcab/t5-small-email-summarizer)
|
| 313 |
| π **Dataset:** [argilla/FinePersonas-Conversations-Email-Summaries](https://huggingface.co/datasets/argilla/FinePersonas-Conversations-Email-Summaries)
|
| 314 |
+
| π **Running on:** CPU (Free tier)
|
| 315 |
""")
|
| 316 |
|
| 317 |
with gr.Row():
|
|
|
|
| 399 |
- **Dual-mode**: Get brief or detailed summaries on demand
|
| 400 |
- **Robust**: Handles typos, abbreviations, and informal language
|
| 401 |
- **Smart normalization**: Automatically handles titles (Mr., Dr., Prof., etc.)
|
| 402 |
+
- **Fast**: Processes emails quickly even on CPU
|
| 403 |
|
| 404 |
### π§ Preprocessing Features:
|
| 405 |
- **Title Normalization**: Converts "Mr." β "Mr", "Dr." β "Dr" to avoid tokenization issues
|