Spaces:
Running
on
Zero
Running
on
Zero
| # -------------------------------------------------------- | |
| # Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) | |
| # Github source: https://github.com/microsoft/unilm/tree/master/beit3 | |
| # Copyright (c) 2023 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # --------------------------------------------------------' | |
| import datetime | |
| import io | |
| import os | |
| import math | |
| import time | |
| import json | |
| import argparse | |
| import numpy as np | |
| from pathlib import Path | |
| from collections import defaultdict, deque | |
| from timm.utils import get_state_dict | |
| import torch | |
| import torch.distributed as dist | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch._six import inf | |
| from torchmetrics import Metric | |
| from tensorboardX import SummaryWriter | |
| def bool_flag(s): | |
| """ | |
| Parse boolean arguments from the command line. | |
| """ | |
| FALSY_STRINGS = {"off", "false", "0"} | |
| TRUTHY_STRINGS = {"on", "true", "1"} | |
| if s.lower() in FALSY_STRINGS: | |
| return False | |
| elif s.lower() in TRUTHY_STRINGS: | |
| return True | |
| else: | |
| raise argparse.ArgumentTypeError("invalid value for a boolean flag") | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| log_msg = [ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append('max mem: {memory:.0f}') | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| class TensorboardLogger(object): | |
| def __init__(self, log_dir): | |
| self.writer = SummaryWriter(logdir=log_dir) | |
| self.step = 0 | |
| def set_step(self, step=None): | |
| if step is not None: | |
| self.step = step | |
| else: | |
| self.step += 1 | |
| def update(self, head='scalar', step=None, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) | |
| def flush(self): | |
| self.writer.flush() | |
| def _load_checkpoint_for_ema(model_ema, checkpoint): | |
| """ | |
| Workaround for ModelEma._load_checkpoint to accept an already-loaded object | |
| """ | |
| mem_file = io.BytesIO() | |
| torch.save(checkpoint, mem_file) | |
| mem_file.seek(0) | |
| model_ema._load_checkpoint(mem_file) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| import builtins as __builtin__ | |
| builtin_print = __builtin__.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| if is_master or force: | |
| builtin_print(*args, **kwargs) | |
| __builtin__.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def _get_rank_env(): | |
| if "RANK" in os.environ: | |
| return int(os.environ["RANK"]) | |
| else: | |
| return int(os.environ['OMPI_COMM_WORLD_RANK']) | |
| def _get_local_rank_env(): | |
| if "LOCAL_RANK" in os.environ: | |
| return int(os.environ["LOCAL_RANK"]) | |
| else: | |
| return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
| def _get_world_size_env(): | |
| if "WORLD_SIZE" in os.environ: | |
| return int(os.environ["WORLD_SIZE"]) | |
| else: | |
| return int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| # The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git) | |
| def init_distributed_mode(args): | |
| if args.dist_on_itp: | |
| args.rank = _get_rank_env() | |
| args.world_size = _get_world_size_env() # int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| args.gpu = _get_local_rank_env() | |
| args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) | |
| os.environ['LOCAL_RANK'] = str(args.gpu) | |
| os.environ['RANK'] = str(args.rank) | |
| os.environ['WORLD_SIZE'] = str(args.world_size) | |
| # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
| elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| elif 'SLURM_PROCID' in os.environ: | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| else: | |
| print('Not using distributed mode') | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| torch.distributed.init_process_group( | |
| backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank, | |
| timeout=datetime.timedelta(0, 7200) | |
| ) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): | |
| missing_keys = [] | |
| unexpected_keys = [] | |
| error_msgs = [] | |
| # copy state_dict so _load_from_state_dict can modify it | |
| metadata = getattr(state_dict, '_metadata', None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| def load(module, prefix=''): | |
| local_metadata = {} if metadata is None else metadata.get( | |
| prefix[:-1], {}) | |
| module._load_from_state_dict( | |
| state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| load(child, prefix + name + '.') | |
| load(model, prefix=prefix) | |
| warn_missing_keys = [] | |
| ignore_missing_keys = [] | |
| for key in missing_keys: | |
| keep_flag = True | |
| for ignore_key in ignore_missing.split('|'): | |
| if ignore_key in key: | |
| keep_flag = False | |
| break | |
| if keep_flag: | |
| warn_missing_keys.append(key) | |
| else: | |
| ignore_missing_keys.append(key) | |
| missing_keys = warn_missing_keys | |
| if len(missing_keys) > 0: | |
| print("Weights of {} not initialized from pretrained model: {}".format( | |
| model.__class__.__name__, missing_keys)) | |
| if len(unexpected_keys) > 0: | |
| print("Weights from pretrained model not used in {}: {}".format( | |
| model.__class__.__name__, unexpected_keys)) | |
| if len(ignore_missing_keys) > 0: | |
| print("Ignored weights of {} not initialized from pretrained model: {}".format( | |
| model.__class__.__name__, ignore_missing_keys)) | |
| if len(error_msgs) > 0: | |
| print('\n'.join(error_msgs)) | |
| class NativeScalerWithGradNormCount: | |
| state_dict_key = "amp_scaler" | |
| def __init__(self): | |
| self._scaler = torch.cuda.amp.GradScaler() | |
| def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
| self._scaler.scale(loss).backward(create_graph=create_graph) | |
| if update_grad: | |
| if clip_grad is not None: | |
| assert parameters is not None | |
| self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| else: | |
| self._scaler.unscale_(optimizer) | |
| norm = get_grad_norm_(parameters) | |
| self._scaler.step(optimizer) | |
| self._scaler.update() | |
| else: | |
| norm = None | |
| return norm | |
| def state_dict(self): | |
| return self._scaler.state_dict() | |
| def load_state_dict(self, state_dict): | |
| self._scaler.load_state_dict(state_dict) | |
| def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = [p for p in parameters if p.grad is not None] | |
| norm_type = float(norm_type) | |
| if len(parameters) == 0: | |
| return torch.tensor(0.) | |
| device = parameters[0].grad.device | |
| if norm_type == inf: | |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
| else: | |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) | |
| return total_norm | |
| def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, | |
| start_warmup_value=0, warmup_steps=-1, sched_type="cos"): | |
| warmup_schedule = np.array([]) | |
| warmup_iters = warmup_epochs * niter_per_ep | |
| if warmup_steps > 0: | |
| warmup_iters = warmup_steps | |
| print("Set warmup steps = %d" % warmup_iters) | |
| if warmup_epochs > 0: | |
| warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
| if sched_type == "cos": | |
| iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
| schedule = np.array([ | |
| final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) | |
| elif sched_type == "linear": | |
| schedule = np.linspace(base_value, final_value, epochs * niter_per_ep - warmup_iters) | |
| else: | |
| raise NotImplementedError() | |
| schedule = np.concatenate((warmup_schedule, schedule)) | |
| assert len(schedule) == epochs * niter_per_ep | |
| return schedule | |
| def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): | |
| output_dir = Path(args.output_dir) | |
| if loss_scaler is not None: | |
| checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch)] | |
| for checkpoint_path in checkpoint_paths: | |
| to_save = { | |
| 'model': model_without_ddp.state_dict(), | |
| 'optimizer': optimizer.state_dict(), | |
| 'epoch': epoch, | |
| 'scaler': loss_scaler.state_dict(), | |
| 'args': args, | |
| } | |
| if model_ema is not None: | |
| to_save['model_ema'] = get_state_dict(model_ema) | |
| save_on_master(to_save, checkpoint_path) | |
| else: | |
| client_state = {'epoch': epoch, "args": args} | |
| if model_ema is not None: | |
| client_state['model_ema'] = get_state_dict(model_ema) | |
| model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch, client_state=client_state) | |
| def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): | |
| output_dir = Path(args.output_dir) | |
| if loss_scaler is not None: | |
| # torch.amp | |
| if args.auto_resume and len(args.resume) == 0: | |
| import glob | |
| all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) | |
| latest_ckpt = -1 | |
| for ckpt in all_checkpoints: | |
| t = ckpt.split('-')[-1].split('.')[0] | |
| if t.isdigit(): | |
| latest_ckpt = max(int(t), latest_ckpt) | |
| if latest_ckpt >= 0: | |
| args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) | |
| print("Auto resume checkpoint: %s" % args.resume) | |
| if args.resume: | |
| if args.resume.startswith('https'): | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| args.resume, map_location='cpu', check_hash=True) | |
| else: | |
| checkpoint = torch.load(args.resume, map_location='cpu') | |
| model_without_ddp.load_state_dict(checkpoint['model']) | |
| print("Resume checkpoint %s" % args.resume) | |
| if 'optimizer' in checkpoint and 'epoch' in checkpoint: | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| args.start_epoch = checkpoint['epoch'] + 1 | |
| if hasattr(args, 'model_ema') and args.model_ema: | |
| _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) | |
| if 'scaler' in checkpoint: | |
| loss_scaler.load_state_dict(checkpoint['scaler']) | |
| print("With optim & sched!") | |
| else: | |
| # deepspeed, only support '--auto_resume'. | |
| if args.auto_resume: | |
| import glob | |
| all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) | |
| latest_ckpt = -1 | |
| for ckpt in all_checkpoints: | |
| t = ckpt.split('-')[-1].split('.')[0] | |
| if t.isdigit(): | |
| latest_ckpt = max(int(t), latest_ckpt) | |
| if latest_ckpt >= 0: | |
| args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) | |
| print("Auto resume checkpoint: %d" % latest_ckpt) | |
| _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) | |
| args.start_epoch = client_states['epoch'] + 1 | |
| if model_ema is not None: | |
| if args.model_ema: | |
| _load_checkpoint_for_ema(model_ema, client_states['model_ema']) | |
| # The implementation code is modified from DeiT (https://github.com/facebookresearch/deit.git) | |
| def load_model_and_may_interpolate(ckpt_path, model, model_key, model_prefix): | |
| if ckpt_path.startswith('https'): | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| ckpt_path, map_location='cpu', check_hash=True) | |
| else: | |
| checkpoint = torch.load(ckpt_path, map_location='cpu') | |
| print("Load ckpt from %s" % ckpt_path) | |
| checkpoint_model = None | |
| for model_key in model_key.split('|'): | |
| if model_key in checkpoint: | |
| checkpoint_model = checkpoint[model_key] | |
| print("Load state_dict by model_key = %s" % model_key) | |
| break | |
| if checkpoint_model is None: | |
| checkpoint_model = checkpoint | |
| state_dict = model.state_dict() | |
| for k in ['head.weight', 'head.bias']: | |
| if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: | |
| print(f"Removing key {k} from pretrained checkpoint") | |
| del checkpoint_model[k] | |
| # interpolate position embedding | |
| for pos_embed_key in ("vision_pos_embed", "pos_embed", "beit3.encoder.embed_positions.A.weight"): | |
| if pos_embed_key in checkpoint_model: | |
| pos_embed_checkpoint = checkpoint_model[pos_embed_key] | |
| embedding_size = pos_embed_checkpoint.shape[-1] | |
| if pos_embed_key == "beit3.encoder.embed_positions.A.weight": | |
| # being consistent with Fairseq, which starts from 2 for position embedding | |
| torchscale_model = True | |
| num_patches = model.beit3.vision_embed.num_patches | |
| num_extra_tokens = model.beit3.vision_embed.num_position_embeddings() + 2 - num_patches | |
| else: | |
| torchscale_model = False | |
| num_patches = model.patch_embed.num_patches | |
| num_extra_tokens = getattr(model, pos_embed_key).shape[-2] - num_patches | |
| # height (== width) for the checkpoint position embedding | |
| orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
| # height (== width) for the new position embedding | |
| new_size = int(num_patches ** 0.5) | |
| # class_token and dist_token are kept unchanged | |
| if orig_size != new_size: | |
| print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
| if torchscale_model: | |
| extra_tokens = pos_embed_checkpoint[:num_extra_tokens].unsqueeze(0) | |
| # only the position tokens are interpolated | |
| pos_tokens = pos_embed_checkpoint[num_extra_tokens:] | |
| else: | |
| extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
| # only the position tokens are interpolated | |
| pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
| pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
| pos_tokens = torch.nn.functional.interpolate( | |
| pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
| pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
| new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
| if torchscale_model: | |
| new_pos_embed = new_pos_embed.squeeze(0) | |
| checkpoint_model[pos_embed_key] = new_pos_embed | |
| load_state_dict(model, checkpoint_model, prefix=model_prefix) | |
| def create_ds_config(args): | |
| args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") | |
| with open(args.deepspeed_config, mode="w") as writer: | |
| ds_config = { | |
| "train_batch_size": args.batch_size * args.update_freq * get_world_size(), | |
| "train_micro_batch_size_per_gpu": args.batch_size, | |
| "steps_per_print": 1000, | |
| "optimizer": { | |
| "type": "Adam", | |
| "adam_w_mode": True, | |
| "params": { | |
| "lr": args.lr, | |
| "weight_decay": args.weight_decay, | |
| "bias_correction": True, | |
| "betas": [ | |
| args.opt_betas[0], | |
| args.opt_betas[1] | |
| ], | |
| "eps": args.opt_eps | |
| } | |
| }, | |
| "fp16": { | |
| "enabled": True, | |
| "loss_scale": 0, | |
| "initial_scale_power": getattr(args, "initial_scale_power", 12), | |
| "loss_scale_window": 1000, | |
| "hysteresis": 2, | |
| "min_loss_scale": 1 | |
| }, | |
| "amp": { | |
| "enabled": False, | |
| "opt_level": "O2" | |
| } | |
| } | |
| if args.clip_grad is not None: | |
| ds_config.update({'gradient_clipping': args.clip_grad}) | |
| if args.zero_stage == 1: | |
| ds_config.update({"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}}) | |
| elif args.zero_stage > 1: | |
| raise NotImplementedError() | |
| writer.write(json.dumps(ds_config, indent=2)) | |
| def merge_batch_tensors_by_dict_key(batch): | |
| batch_tensors = {} | |
| for tensor_key in batch[0]: | |
| if isinstance(batch[0][tensor_key], torch.Tensor): | |
| batch_tensors[tensor_key] = torch.stack([d[tensor_key] for d in batch]) | |
| else: | |
| batch_tensors[tensor_key] = torch.tensor([d[tensor_key] for d in batch], dtype=torch.long) | |
| return batch_tensors | |
| def get_loss_scale_for_deepspeed(model): | |
| optimizer = model.optimizer | |
| loss_scale = None | |
| if hasattr(optimizer, 'loss_scale'): | |
| loss_scale = optimizer.loss_scale | |
| elif hasattr(optimizer, 'cur_scale'): | |
| loss_scale = optimizer.cur_scale | |
| return loss_scale | |
| class GatherLayer(torch.autograd.Function): | |
| """ | |
| Gather tensors from all workers with support for backward propagation: | |
| This implementation does not cut the gradients as torch.distributed.all_gather does. | |
| """ | |
| def forward(ctx, x): | |
| output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] | |
| dist.all_gather(output, x) | |
| return tuple(output) | |
| def backward(ctx, *grads): | |
| all_gradients = torch.stack(grads) | |
| dist.all_reduce(all_gradients) | |
| return all_gradients[dist.get_rank()] | |
| def gather_features( | |
| image_features, | |
| text_features, | |
| ): | |
| gathered_image_features = GatherLayer.apply(image_features) | |
| gathered_text_features = GatherLayer.apply(text_features) | |
| all_image_features = torch.cat(gathered_image_features) | |
| all_text_features = torch.cat(gathered_text_features) | |
| return all_image_features, all_text_features | |
| # The implementation code is modified from open_clip (https://github.com/mlfoundations/open_clip.git) | |
| class ClipLoss(nn.Module): | |
| def __init__( | |
| self, | |
| cache_labels=False, | |
| rank=0, | |
| world_size=1, | |
| ): | |
| super().__init__() | |
| self.cache_labels = cache_labels | |
| self.rank = rank | |
| self.world_size = world_size | |
| # cache state | |
| self.prev_num_logits = 0 | |
| self.labels = {} | |
| def forward(self, image_features, text_features, logit_scale): | |
| device = image_features.device | |
| if self.world_size > 1: | |
| all_image_features, all_text_features = gather_features( | |
| image_features, text_features | |
| ) | |
| logits_per_image = logit_scale * image_features @ all_text_features.T | |
| logits_per_text = logit_scale * text_features @ all_image_features.T | |
| else: | |
| logits_per_image = logit_scale * image_features @ text_features.T | |
| logits_per_text = logit_scale * text_features @ image_features.T | |
| # calculated ground-truth and cache if enabled | |
| num_logits = logits_per_image.shape[0] | |
| if self.prev_num_logits != num_logits or device not in self.labels: | |
| labels = torch.arange(num_logits, device=device, dtype=torch.long) | |
| if self.world_size > 1: | |
| labels = labels + num_logits * self.rank | |
| if self.cache_labels: | |
| self.labels[device] = labels | |
| self.prev_num_logits = num_logits | |
| else: | |
| labels = self.labels[device] | |
| total_loss = ( | |
| F.cross_entropy(logits_per_image, labels) + | |
| F.cross_entropy(logits_per_text, labels) | |
| ) / 2 | |
| return total_loss, logits_per_image, logits_per_text | |
| def write_result_to_jsonl(test_stats, result_file): | |
| with open(result_file, mode="w", encoding="utf-8") as writer: | |
| writer.write(json.dumps(test_stats, indent=None)) | |
| def read_result_from_jsonl(result_file): | |
| with open(result_file, mode="r", encoding="utf-8") as reader: | |
| return json.load(reader) | |
| # The implementation code is from ViLT (https://github.com/dandelin/ViLT.git) | |
| class VQAScore(Metric): | |
| def __init__(self, dist_sync_on_step=False): | |
| super().__init__(dist_sync_on_step=dist_sync_on_step) | |
| self.add_state("score", default=torch.tensor(0.0), dist_reduce_fx="sum") | |
| self.add_state("total", default=torch.tensor(0.0), dist_reduce_fx="sum") | |
| def update(self, logits, target): | |
| logits, target = ( | |
| logits.detach().float().to(self.score.device), | |
| target.detach().float().to(self.score.device), | |
| ) | |
| logits = torch.max(logits, 1)[1] | |
| one_hots = torch.zeros(*target.size()).to(target) | |
| one_hots.scatter_(1, logits.view(-1, 1), 1) | |
| scores = one_hots * target | |
| self.score += scores.sum() | |
| self.total += len(logits) | |
| def compute(self): | |
| return self.score / self.total | |
| class BertCaptioningLoss(nn.Module): | |
| def __init__(self, label_smoothing, drop_worst_ratio, drop_worst_after): | |
| super().__init__() | |
| self.label_smoothing = label_smoothing | |
| self.drop_worst_ratio = drop_worst_ratio | |
| self.drop_worst_after = drop_worst_after | |
| self.log_soft = nn.LogSoftmax(dim=1) | |
| self.kl = nn.KLDivLoss(reduction='none') | |
| self.iter = 0 | |
| def forward(self, logits, target, iter): | |
| eps = self.label_smoothing | |
| n_class = logits.size(1) | |
| one_hot = torch.zeros_like(logits).scatter(1, target.view(-1, 1), 1) | |
| one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) | |
| log_prb = self.log_soft(logits) | |
| loss = self.kl(log_prb, one_hot).sum(1) | |
| if self.drop_worst_ratio > 0 and iter > self.drop_worst_after: | |
| loss, _ = torch.topk(loss, | |
| k=int(loss.shape[0] * (1-self.drop_worst_ratio)), | |
| largest=False) | |
| loss = loss.mean() | |
| return loss | |
| class BeamHypotheses(object): | |
| def __init__(self, n_hyp, max_length, length_penalty, early_stopping): | |
| """ | |
| Initialize n-best list of hypotheses. | |
| """ | |
| self.max_length = max_length - 1 # ignoring bos_token | |
| self.length_penalty = length_penalty | |
| self.early_stopping = early_stopping | |
| self.n_hyp = n_hyp | |
| self.hyp = [] | |
| self.worst_score = 1e9 | |
| def __len__(self): | |
| """ | |
| Number of hypotheses in the list. | |
| """ | |
| return len(self.hyp) | |
| def add(self, hyp, sum_logprobs): | |
| """ | |
| Add a new hypothesis to the list. | |
| """ | |
| score = sum_logprobs / len(hyp) ** self.length_penalty | |
| if len(self) < self.n_hyp or score > self.worst_score: | |
| self.hyp.append((score, hyp)) | |
| if len(self) > self.n_hyp: | |
| sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)]) | |
| del self.hyp[sorted_scores[0][1]] | |
| self.worst_score = sorted_scores[1][0] | |
| else: | |
| self.worst_score = min(score, self.worst_score) | |
| def is_done(self, best_sum_logprobs): | |
| """ | |
| If there are enough hypotheses and that none of the hypotheses being generated | |
| can become better than the worst one in the heap, then we are done with this sentence. | |
| """ | |
| if len(self) < self.n_hyp: | |
| return False | |
| elif self.early_stopping: | |
| return True | |
| else: | |
| return self.worst_score >= best_sum_logprobs / self.max_length ** self.length_penalty | |
| def dump_predictions(args, result, file_suffix): | |
| global_rank = get_rank() | |
| jsons = None | |
| if global_rank >= 0: | |
| output_file = os.path.join(args.task_cache_path, f"submit_{global_rank}_{file_suffix}.json") | |
| with open(output_file, "w") as fp: | |
| json.dump(result, fp, indent=2) | |
| torch.distributed.barrier() | |
| if global_rank == 0: | |
| world_size = get_world_size() | |
| jsons = [] | |
| for i in range(world_size): | |
| each_file = os.path.join(args.task_cache_path, f"submit_{i}_{file_suffix}.json") | |
| with open(each_file, "r") as fp: | |
| jsons += json.load(fp) | |
| new_jsons = [] | |
| res_dict = dict() | |
| if args.task in ["coco_captioning", "nocaps"]: | |
| qid_key = "image_id" | |
| else: | |
| # for VQAv2 | |
| qid_key = "question_id" | |
| for item in jsons: | |
| if item[qid_key] in res_dict: | |
| continue | |
| new_jsons.append(item) | |
| res_dict[item[qid_key]] = item | |
| jsons = new_jsons | |
| torch.distributed.barrier() | |
| os.remove(output_file) | |
| else: | |
| jsons = result | |
| result_file = os.path.join(args.output_dir, f"submit_{file_suffix}.json") | |
| if jsons is not None: | |
| with open(result_file, "w") as fp: | |
| json.dump(jsons, fp, indent=2) | |
| print("Infer %d examples into %s" % (len(jsons), result_file)) | |
| return result_file | |
| # The evaluation code is from BLIP (https://github.com/salesforce/BLIP) | |
| # For nocaps, please submit the prediction file to the evaluate server (https://eval.ai/web/challenges/challenge-page/355/overview) to obtain the final results | |
| def coco_caption_eval(gt_dir, results_file, split): | |
| from pycocotools.coco import COCO | |
| from pycocoevalcap.eval import COCOEvalCap | |
| from torchvision.datasets.utils import download_url | |
| urls = {'coco_captioning_val': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json', | |
| 'coco_captioning_test': 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json', | |
| 'nocaps_val': 'https://github.com/addf400/files/releases/download/beit3/nocaps_val_gt.json'} | |
| filenames = {'coco_captioning_val':'coco_karpathy_val_gt.json', | |
| 'coco_captioning_test':'coco_karpathy_test_gt.json', | |
| 'nocaps_val':'nocaps_val_gt.json'} | |
| download_url(urls[split], gt_dir) | |
| annotation_file = os.path.join(gt_dir, filenames[split]) | |
| # create coco object and coco_result object | |
| coco = COCO(annotation_file) | |
| coco_result = coco.loadRes(results_file) | |
| # create coco_eval object by taking coco and coco_result | |
| coco_eval = COCOEvalCap(coco, coco_result) | |
| # evaluate results | |
| # SPICE will take a few minutes the first time, but speeds up due to caching | |
| coco_eval.evaluate() | |
| res_dict = dict() | |
| for metric, score in coco_eval.eval.items(): | |
| res_dict[metric] = score | |
| return res_dict | |