Update streamlit-webrtc to 0.6.0
Browse files- app.py +32 -3
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
import logging
|
| 2 |
import logging.handlers
|
| 3 |
import queue
|
|
|
|
|
|
|
| 4 |
import urllib.request
|
| 5 |
from pathlib import Path
|
|
|
|
| 6 |
|
| 7 |
try:
|
| 8 |
from typing import Literal
|
|
@@ -227,14 +230,23 @@ def app_object_detection():
|
|
| 227 |
|
| 228 |
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
| 229 |
|
| 230 |
-
class
|
| 231 |
confidence_threshold: float
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def __init__(self) -> None:
|
| 234 |
self._net = cv2.dnn.readNetFromCaffe(
|
| 235 |
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)
|
| 236 |
)
|
| 237 |
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
def _annotate_image(self, image, detections):
|
| 240 |
# loop over the detections
|
|
@@ -275,7 +287,11 @@ def app_object_detection():
|
|
| 275 |
self._net.setInput(blob)
|
| 276 |
detections = self._net.forward()
|
| 277 |
annotated_image, labels = self._annotate_image(image, detections)
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
return annotated_image
|
| 281 |
|
|
@@ -283,7 +299,7 @@ def app_object_detection():
|
|
| 283 |
key="object-detection",
|
| 284 |
mode=WebRtcMode.SENDRECV,
|
| 285 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
| 286 |
-
video_transformer_factory=
|
| 287 |
async_transform=True,
|
| 288 |
)
|
| 289 |
|
|
@@ -293,6 +309,19 @@ def app_object_detection():
|
|
| 293 |
if webrtc_ctx.video_transformer:
|
| 294 |
webrtc_ctx.video_transformer.confidence_threshold = confidence_threshold
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
st.markdown(
|
| 297 |
"This demo uses a model and code from "
|
| 298 |
"https://github.com/robmarkcole/object-detection-app. "
|
|
|
|
| 1 |
import logging
|
| 2 |
import logging.handlers
|
| 3 |
import queue
|
| 4 |
+
import threading
|
| 5 |
+
import time
|
| 6 |
import urllib.request
|
| 7 |
from pathlib import Path
|
| 8 |
+
from typing import List, Union
|
| 9 |
|
| 10 |
try:
|
| 11 |
from typing import Literal
|
|
|
|
| 230 |
|
| 231 |
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
| 232 |
|
| 233 |
+
class MobileNetSSDVideoTransformer(VideoTransformerBase):
|
| 234 |
confidence_threshold: float
|
| 235 |
+
_labels: Union[List[str], None]
|
| 236 |
+
_labels_lock: threading.Lock
|
| 237 |
|
| 238 |
def __init__(self) -> None:
|
| 239 |
self._net = cv2.dnn.readNetFromCaffe(
|
| 240 |
str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH)
|
| 241 |
)
|
| 242 |
self.confidence_threshold = DEFAULT_CONFIDENCE_THRESHOLD
|
| 243 |
+
self._labels = None
|
| 244 |
+
self._labels_lock = threading.Lock()
|
| 245 |
+
|
| 246 |
+
@property
|
| 247 |
+
def labels(self) -> Union[List[str], None]:
|
| 248 |
+
with self._labels_lock:
|
| 249 |
+
return self._labels
|
| 250 |
|
| 251 |
def _annotate_image(self, image, detections):
|
| 252 |
# loop over the detections
|
|
|
|
| 287 |
self._net.setInput(blob)
|
| 288 |
detections = self._net.forward()
|
| 289 |
annotated_image, labels = self._annotate_image(image, detections)
|
| 290 |
+
|
| 291 |
+
# NOTE: This `transform` method is called in another thread,
|
| 292 |
+
# so it must be thread-safe.
|
| 293 |
+
with self._labels_lock:
|
| 294 |
+
self._labels = labels
|
| 295 |
|
| 296 |
return annotated_image
|
| 297 |
|
|
|
|
| 299 |
key="object-detection",
|
| 300 |
mode=WebRtcMode.SENDRECV,
|
| 301 |
client_settings=WEBRTC_CLIENT_SETTINGS,
|
| 302 |
+
video_transformer_factory=MobileNetSSDVideoTransformer,
|
| 303 |
async_transform=True,
|
| 304 |
)
|
| 305 |
|
|
|
|
| 309 |
if webrtc_ctx.video_transformer:
|
| 310 |
webrtc_ctx.video_transformer.confidence_threshold = confidence_threshold
|
| 311 |
|
| 312 |
+
if st.checkbox("Show the detected labels"):
|
| 313 |
+
if webrtc_ctx.state.playing:
|
| 314 |
+
labels_placeholder = st.empty()
|
| 315 |
+
# NOTE: The video transformation with object detection and
|
| 316 |
+
# this loop displaying the result labels are running
|
| 317 |
+
# in different threads asynchronously.
|
| 318 |
+
# Then the rendered video frames and the labels displayed here
|
| 319 |
+
# are not synchronized.
|
| 320 |
+
while True:
|
| 321 |
+
if webrtc_ctx.video_transformer:
|
| 322 |
+
labels_placeholder.write(webrtc_ctx.video_transformer.labels)
|
| 323 |
+
time.sleep(0.1)
|
| 324 |
+
|
| 325 |
st.markdown(
|
| 326 |
"This demo uses a model and code from "
|
| 327 |
"https://github.com/robmarkcole/object-detection-app. "
|
requirements.txt
CHANGED
|
@@ -4,5 +4,5 @@ av==8.0.2
|
|
| 4 |
numpy==1.19.5
|
| 5 |
opencv_python==4.5.1.48
|
| 6 |
streamlit==0.74.1
|
| 7 |
-
streamlit_webrtc==0.
|
| 8 |
typing_extensions==3.7.4.3
|
|
|
|
| 4 |
numpy==1.19.5
|
| 5 |
opencv_python==4.5.1.48
|
| 6 |
streamlit==0.74.1
|
| 7 |
+
streamlit_webrtc==0.6.0
|
| 8 |
typing_extensions==3.7.4.3
|