Use Transformers.js 3.0.0
Browse files- index.html +4 -2
index.html
CHANGED
|
@@ -11,17 +11,19 @@ transformers_js_py
|
|
| 11 |
</gradio-requirements>
|
| 12 |
|
| 13 |
<gradio-file name="app.py" entrypoint>
|
| 14 |
-
from
|
| 15 |
import gradio as gr
|
| 16 |
import numpy as np
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
synthesizer = await pipeline(
|
| 21 |
'text-to-speech',
|
| 22 |
'Xenova/speecht5_tts',
|
| 23 |
{ "quantized": False }
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
async def synthesize(text):
|
|
|
|
| 11 |
</gradio-requirements>
|
| 12 |
|
| 13 |
<gradio-file name="app.py" entrypoint>
|
| 14 |
+
from transformers_js_py import import_transformers_js
|
| 15 |
import gradio as gr
|
| 16 |
import numpy as np
|
| 17 |
|
| 18 |
+
transformers_js = await import_transformers_js("3.0.0")
|
| 19 |
+
pipeline = transformers_js.pipeline
|
| 20 |
|
| 21 |
synthesizer = await pipeline(
|
| 22 |
'text-to-speech',
|
| 23 |
'Xenova/speecht5_tts',
|
| 24 |
{ "quantized": False }
|
| 25 |
)
|
| 26 |
+
speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';
|
| 27 |
|
| 28 |
|
| 29 |
async def synthesize(text):
|