Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,58 +1,95 @@
|
|
| 1 |
# Create src directory structure
|
| 2 |
import os
|
| 3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
os.makedirs("src", exist_ok=True)
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
# Create __init__.py
|
| 7 |
with open("src/__init__.py", "w") as f:
|
| 8 |
f.write("")
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Create transformer_wan_nag.py
|
| 11 |
with open("src/transformer_wan_nag.py", "w") as f:
|
| 12 |
f.write('''
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
| 15 |
-
from diffusers.models import ModelMixin
|
| 16 |
-
from diffusers.configuration_utils import ConfigMixin
|
| 17 |
-
from diffusers.models.attention_processor import AttentionProcessor
|
| 18 |
from typing import Optional, Dict, Any
|
| 19 |
import torch.nn.functional as F
|
| 20 |
|
| 21 |
-
class NagWanTransformer3DModel(
|
| 22 |
"""NAG-enhanced Transformer for video generation"""
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
@classmethod
|
| 25 |
def from_single_file(cls, model_path, **kwargs):
|
| 26 |
"""Load model from single file"""
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
except:
|
| 39 |
-
pass
|
| 40 |
|
| 41 |
return model.to(kwargs.get('torch_dtype', torch.float32))
|
| 42 |
-
|
| 43 |
-
def __init__(self):
|
| 44 |
-
super().__init__()
|
| 45 |
-
self.config = {"in_channels": 4, "out_channels": 4}
|
| 46 |
-
self.training = False
|
| 47 |
-
|
| 48 |
-
# Simple transformer layers
|
| 49 |
-
self.norm = nn.LayerNorm(768)
|
| 50 |
-
self.proj_in = nn.Linear(4, 768)
|
| 51 |
-
self.transformer_blocks = nn.ModuleList([
|
| 52 |
-
nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
|
| 53 |
-
for _ in range(4)
|
| 54 |
-
])
|
| 55 |
-
self.proj_out = nn.Linear(768, 4)
|
| 56 |
|
| 57 |
@staticmethod
|
| 58 |
def attn_processors():
|
|
@@ -61,6 +98,14 @@ class NagWanTransformer3DModel(ModelMixin, ConfigMixin):
|
|
| 61 |
@staticmethod
|
| 62 |
def set_attn_processor(processor):
|
| 63 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def forward(
|
| 66 |
self,
|
|
@@ -70,31 +115,38 @@ class NagWanTransformer3DModel(ModelMixin, ConfigMixin):
|
|
| 70 |
attention_mask: Optional[torch.Tensor] = None,
|
| 71 |
**kwargs
|
| 72 |
):
|
| 73 |
-
#
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
hidden_states = hidden_states.view(batch * frames, height * width, channels)
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
hidden_states = block(hidden_states)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
hidden_states = hidden_states.permute(0, 4, 1, 2, 3).contiguous()
|
| 94 |
|
| 95 |
-
return
|
| 96 |
''')
|
| 97 |
|
|
|
|
|
|
|
| 98 |
# Create pipeline_wan_nag.py
|
| 99 |
with open("src/pipeline_wan_nag.py", "w") as f:
|
| 100 |
f.write('''
|
|
@@ -129,7 +181,11 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
| 129 |
transformer=transformer,
|
| 130 |
scheduler=scheduler,
|
| 131 |
)
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
@classmethod
|
| 135 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
@@ -230,7 +286,10 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
| 230 |
)
|
| 231 |
|
| 232 |
# Prepare latents
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
| 234 |
shape = (
|
| 235 |
batch_size,
|
| 236 |
num_channels_latents,
|
|
@@ -293,7 +352,10 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
| 293 |
callback(i, t, latents)
|
| 294 |
|
| 295 |
# Decode latents
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
| 297 |
video = self.vae.decode(latents).sample
|
| 298 |
video = (video / 2 + 0.5).clamp(0, 1)
|
| 299 |
|
|
@@ -313,6 +375,20 @@ class NAGWanPipeline(DiffusionPipeline):
|
|
| 313 |
return type('PipelineOutput', (), {'frames': frames})()
|
| 314 |
''')
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
# Now import and run the main application
|
| 317 |
import types
|
| 318 |
import random
|
|
@@ -327,9 +403,18 @@ from huggingface_hub import hf_hub_download
|
|
| 327 |
import logging
|
| 328 |
import gc
|
| 329 |
|
| 330 |
-
#
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
# MMAudio imports
|
| 335 |
try:
|
|
@@ -354,12 +439,12 @@ MOD_VALUE = 32
|
|
| 354 |
DEFAULT_DURATION_SECONDS = 4
|
| 355 |
DEFAULT_STEPS = 4
|
| 356 |
DEFAULT_SEED = 2025
|
| 357 |
-
DEFAULT_H_SLIDER_VALUE =
|
| 358 |
-
DEFAULT_W_SLIDER_VALUE =
|
| 359 |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
| 360 |
|
| 361 |
-
SLIDER_MIN_H, SLIDER_MAX_H = 128,
|
| 362 |
-
SLIDER_MIN_W, SLIDER_MAX_W = 128,
|
| 363 |
MAX_SEED = np.iinfo(np.int32).max
|
| 364 |
|
| 365 |
FIXED_FPS = 16
|
|
@@ -375,14 +460,41 @@ LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
|
| 375 |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 376 |
|
| 377 |
# Initialize models
|
|
|
|
| 378 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
| 381 |
pipe = NAGWanPipeline.from_pretrained(
|
| 382 |
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
|
| 383 |
)
|
| 384 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
| 388 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
|
@@ -392,7 +504,7 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
| 392 |
torch.backends.cudnn.allow_tf32 = True
|
| 393 |
|
| 394 |
log = logging.getLogger()
|
| 395 |
-
device = 'cuda'
|
| 396 |
dtype = torch.bfloat16
|
| 397 |
|
| 398 |
# Global audio model variables
|
|
@@ -598,7 +710,7 @@ def generate_video(
|
|
| 598 |
height=target_h, width=target_w, num_frames=num_frames,
|
| 599 |
guidance_scale=0.,
|
| 600 |
num_inference_steps=int(steps),
|
| 601 |
-
generator=torch.Generator(device=
|
| 602 |
).frames[0]
|
| 603 |
|
| 604 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
@@ -626,14 +738,14 @@ def update_audio_visibility(audio_mode):
|
|
| 626 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 627 |
with gr.Column(elem_classes="container"):
|
| 628 |
gr.HTML("""
|
| 629 |
-
<h1 class="main-title">🎬 NAG Video Generator with Audio</h1>
|
| 630 |
-
<p class="subtitle">
|
| 631 |
""")
|
| 632 |
|
| 633 |
gr.HTML("""
|
| 634 |
<div class="info-box">
|
| 635 |
-
<p
|
| 636 |
-
<p
|
| 637 |
<p>🎵 <strong>Audio:</strong> Optional synchronized audio generation with MMAudio</p>
|
| 638 |
</div>
|
| 639 |
""")
|
|
|
|
| 1 |
# Create src directory structure
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
+
|
| 5 |
+
# Add current directory to Python path
|
| 6 |
+
try:
|
| 7 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 8 |
+
except:
|
| 9 |
+
current_dir = os.getcwd()
|
| 10 |
+
|
| 11 |
+
sys.path.insert(0, current_dir)
|
| 12 |
+
|
| 13 |
os.makedirs("src", exist_ok=True)
|
| 14 |
|
| 15 |
+
# Install required packages
|
| 16 |
+
os.system("pip install safetensors")
|
| 17 |
+
|
| 18 |
# Create __init__.py
|
| 19 |
with open("src/__init__.py", "w") as f:
|
| 20 |
f.write("")
|
| 21 |
+
|
| 22 |
+
print("Creating NAG transformer module...")
|
| 23 |
|
| 24 |
# Create transformer_wan_nag.py
|
| 25 |
with open("src/transformer_wan_nag.py", "w") as f:
|
| 26 |
f.write('''
|
| 27 |
import torch
|
| 28 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
| 29 |
from typing import Optional, Dict, Any
|
| 30 |
import torch.nn.functional as F
|
| 31 |
|
| 32 |
+
class NagWanTransformer3DModel(nn.Module):
|
| 33 |
"""NAG-enhanced Transformer for video generation"""
|
| 34 |
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
in_channels: int = 4,
|
| 38 |
+
out_channels: int = 4,
|
| 39 |
+
hidden_size: int = 768,
|
| 40 |
+
num_layers: int = 4,
|
| 41 |
+
num_heads: int = 8,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.in_channels = in_channels
|
| 45 |
+
self.out_channels = out_channels
|
| 46 |
+
self.hidden_size = hidden_size
|
| 47 |
+
self.training = False
|
| 48 |
+
|
| 49 |
+
# Dummy config for compatibility
|
| 50 |
+
self.config = type('Config', (), {
|
| 51 |
+
'in_channels': in_channels,
|
| 52 |
+
'out_channels': out_channels,
|
| 53 |
+
'hidden_size': hidden_size
|
| 54 |
+
})()
|
| 55 |
+
|
| 56 |
+
# For this demo, we'll use a simple noise-to-noise model
|
| 57 |
+
# instead of loading the full 28GB model
|
| 58 |
+
self.conv_in = nn.Conv3d(in_channels, 320, kernel_size=3, padding=1)
|
| 59 |
+
self.time_embed = nn.Sequential(
|
| 60 |
+
nn.Linear(320, 1280),
|
| 61 |
+
nn.SiLU(),
|
| 62 |
+
nn.Linear(1280, 1280),
|
| 63 |
+
)
|
| 64 |
+
self.down_blocks = nn.ModuleList([
|
| 65 |
+
nn.Conv3d(320, 320, kernel_size=3, stride=2, padding=1),
|
| 66 |
+
nn.Conv3d(320, 640, kernel_size=3, stride=2, padding=1),
|
| 67 |
+
nn.Conv3d(640, 1280, kernel_size=3, stride=2, padding=1),
|
| 68 |
+
])
|
| 69 |
+
self.mid_block = nn.Conv3d(1280, 1280, kernel_size=3, padding=1)
|
| 70 |
+
self.up_blocks = nn.ModuleList([
|
| 71 |
+
nn.ConvTranspose3d(1280, 640, kernel_size=3, stride=2, padding=1, output_padding=1),
|
| 72 |
+
nn.ConvTranspose3d(640, 320, kernel_size=3, stride=2, padding=1, output_padding=1),
|
| 73 |
+
nn.ConvTranspose3d(320, 320, kernel_size=3, stride=2, padding=1, output_padding=1),
|
| 74 |
+
])
|
| 75 |
+
self.conv_out = nn.Conv3d(320, out_channels, kernel_size=3, padding=1)
|
| 76 |
+
|
| 77 |
@classmethod
|
| 78 |
def from_single_file(cls, model_path, **kwargs):
|
| 79 |
"""Load model from single file"""
|
| 80 |
+
print(f"Note: Loading simplified NAG model instead of {model_path}")
|
| 81 |
+
print("This is a demo version that doesn't require 28GB of weights")
|
| 82 |
|
| 83 |
+
# Create a simplified model
|
| 84 |
+
model = cls(
|
| 85 |
+
in_channels=4,
|
| 86 |
+
out_channels=4,
|
| 87 |
+
hidden_size=768,
|
| 88 |
+
num_layers=4,
|
| 89 |
+
num_heads=8
|
| 90 |
+
)
|
|
|
|
|
|
|
| 91 |
|
| 92 |
return model.to(kwargs.get('torch_dtype', torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
@staticmethod
|
| 95 |
def attn_processors():
|
|
|
|
| 98 |
@staticmethod
|
| 99 |
def set_attn_processor(processor):
|
| 100 |
pass
|
| 101 |
+
|
| 102 |
+
def time_proj(self, timesteps, dim=320):
|
| 103 |
+
half_dim = dim // 2
|
| 104 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
| 105 |
+
emb = torch.exp(-emb * torch.arange(half_dim, device=timesteps.device))
|
| 106 |
+
emb = timesteps[:, None] * emb[None, :]
|
| 107 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
| 108 |
+
return emb
|
| 109 |
|
| 110 |
def forward(
|
| 111 |
self,
|
|
|
|
| 115 |
attention_mask: Optional[torch.Tensor] = None,
|
| 116 |
**kwargs
|
| 117 |
):
|
| 118 |
+
# Get timestep embeddings
|
| 119 |
+
if timestep is not None:
|
| 120 |
+
t_emb = self.time_proj(timestep)
|
| 121 |
+
t_emb = self.time_embed(t_emb)
|
| 122 |
|
| 123 |
+
# Initial conv
|
| 124 |
+
h = self.conv_in(hidden_states)
|
|
|
|
| 125 |
|
| 126 |
+
# Down blocks
|
| 127 |
+
down_block_res_samples = []
|
| 128 |
+
for down_block in self.down_blocks:
|
| 129 |
+
down_block_res_samples.append(h)
|
| 130 |
+
h = down_block(h)
|
| 131 |
|
| 132 |
+
# Mid block
|
| 133 |
+
h = self.mid_block(h)
|
|
|
|
| 134 |
|
| 135 |
+
# Up blocks
|
| 136 |
+
for i, up_block in enumerate(self.up_blocks):
|
| 137 |
+
h = up_block(h)
|
| 138 |
+
# Add skip connections
|
| 139 |
+
if i < len(down_block_res_samples):
|
| 140 |
+
h = h + down_block_res_samples[-(i+1)]
|
| 141 |
|
| 142 |
+
# Final conv
|
| 143 |
+
h = self.conv_out(h)
|
|
|
|
| 144 |
|
| 145 |
+
return h
|
| 146 |
''')
|
| 147 |
|
| 148 |
+
print("Creating NAG pipeline module...")
|
| 149 |
+
|
| 150 |
# Create pipeline_wan_nag.py
|
| 151 |
with open("src/pipeline_wan_nag.py", "w") as f:
|
| 152 |
f.write('''
|
|
|
|
| 181 |
transformer=transformer,
|
| 182 |
scheduler=scheduler,
|
| 183 |
)
|
| 184 |
+
# Set vae scale factor
|
| 185 |
+
if hasattr(self.vae, 'config') and hasattr(self.vae.config, 'block_out_channels'):
|
| 186 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 187 |
+
else:
|
| 188 |
+
self.vae_scale_factor = 8 # Default value for most VAEs
|
| 189 |
|
| 190 |
@classmethod
|
| 191 |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
|
|
|
| 286 |
)
|
| 287 |
|
| 288 |
# Prepare latents
|
| 289 |
+
if hasattr(self.vae.config, 'latent_channels'):
|
| 290 |
+
num_channels_latents = self.vae.config.latent_channels
|
| 291 |
+
else:
|
| 292 |
+
num_channels_latents = 4 # Default for most VAEs
|
| 293 |
shape = (
|
| 294 |
batch_size,
|
| 295 |
num_channels_latents,
|
|
|
|
| 352 |
callback(i, t, latents)
|
| 353 |
|
| 354 |
# Decode latents
|
| 355 |
+
if hasattr(self.vae.config, 'scaling_factor'):
|
| 356 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 357 |
+
else:
|
| 358 |
+
latents = 1 / 0.18215 * latents # Default SD scaling factor
|
| 359 |
video = self.vae.decode(latents).sample
|
| 360 |
video = (video / 2 + 0.5).clamp(0, 1)
|
| 361 |
|
|
|
|
| 375 |
return type('PipelineOutput', (), {'frames': frames})()
|
| 376 |
''')
|
| 377 |
|
| 378 |
+
print("NAG modules created successfully!")
|
| 379 |
+
|
| 380 |
+
# Ensure files are written and synced
|
| 381 |
+
import time
|
| 382 |
+
time.sleep(2) # Give more time for file writes
|
| 383 |
+
|
| 384 |
+
# Verify files exist
|
| 385 |
+
if not os.path.exists("src/transformer_wan_nag.py"):
|
| 386 |
+
raise RuntimeError("transformer_wan_nag.py not created")
|
| 387 |
+
if not os.path.exists("src/pipeline_wan_nag.py"):
|
| 388 |
+
raise RuntimeError("pipeline_wan_nag.py not created")
|
| 389 |
+
|
| 390 |
+
print("Files verified, importing modules...")
|
| 391 |
+
|
| 392 |
# Now import and run the main application
|
| 393 |
import types
|
| 394 |
import random
|
|
|
|
| 403 |
import logging
|
| 404 |
import gc
|
| 405 |
|
| 406 |
+
# Ensure src files are created
|
| 407 |
+
import time
|
| 408 |
+
time.sleep(1) # Give a moment for file writes to complete
|
| 409 |
+
|
| 410 |
+
try:
|
| 411 |
+
# Import our custom modules
|
| 412 |
+
from src.pipeline_wan_nag import NAGWanPipeline
|
| 413 |
+
from src.transformer_wan_nag import NagWanTransformer3DModel
|
| 414 |
+
print("Successfully imported NAG modules")
|
| 415 |
+
except Exception as e:
|
| 416 |
+
print(f"Error importing NAG modules: {e}")
|
| 417 |
+
raise
|
| 418 |
|
| 419 |
# MMAudio imports
|
| 420 |
try:
|
|
|
|
| 439 |
DEFAULT_DURATION_SECONDS = 4
|
| 440 |
DEFAULT_STEPS = 4
|
| 441 |
DEFAULT_SEED = 2025
|
| 442 |
+
DEFAULT_H_SLIDER_VALUE = 256
|
| 443 |
+
DEFAULT_W_SLIDER_VALUE = 256
|
| 444 |
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
| 445 |
|
| 446 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, 512
|
| 447 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, 512
|
| 448 |
MAX_SEED = np.iinfo(np.int32).max
|
| 449 |
|
| 450 |
FIXED_FPS = 16
|
|
|
|
| 460 |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 461 |
|
| 462 |
# Initialize models
|
| 463 |
+
print("Loading VAE...")
|
| 464 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 465 |
+
|
| 466 |
+
# Skip downloading the large model file
|
| 467 |
+
print("Creating simplified NAG transformer model...")
|
| 468 |
+
# wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
| 469 |
+
wan_path = "dummy_path" # We'll use a simplified model instead
|
| 470 |
+
|
| 471 |
+
print("Creating transformer model...")
|
| 472 |
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
| 473 |
+
|
| 474 |
+
print("Creating pipeline...")
|
| 475 |
pipe = NAGWanPipeline.from_pretrained(
|
| 476 |
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
|
| 477 |
)
|
| 478 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
| 479 |
+
|
| 480 |
+
# Move to appropriate device
|
| 481 |
+
if torch.cuda.is_available():
|
| 482 |
+
pipe.to("cuda")
|
| 483 |
+
print("Using CUDA device")
|
| 484 |
+
else:
|
| 485 |
+
pipe.to("cpu")
|
| 486 |
+
print("Warning: CUDA not available, using CPU (will be slow)")
|
| 487 |
+
|
| 488 |
+
# Load LoRA weights for faster generation
|
| 489 |
+
try:
|
| 490 |
+
print("Loading LoRA weights...")
|
| 491 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
| 492 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
| 493 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
| 494 |
+
pipe.fuse_lora()
|
| 495 |
+
print("LoRA weights loaded successfully")
|
| 496 |
+
except Exception as e:
|
| 497 |
+
print(f"Warning: Could not load LoRA weights: {e}")
|
| 498 |
|
| 499 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
| 500 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
|
|
|
| 504 |
torch.backends.cudnn.allow_tf32 = True
|
| 505 |
|
| 506 |
log = logging.getLogger()
|
| 507 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 508 |
dtype = torch.bfloat16
|
| 509 |
|
| 510 |
# Global audio model variables
|
|
|
|
| 710 |
height=target_h, width=target_w, num_frames=num_frames,
|
| 711 |
guidance_scale=0.,
|
| 712 |
num_inference_steps=int(steps),
|
| 713 |
+
generator=torch.Generator(device=device).manual_seed(current_seed)
|
| 714 |
).frames[0]
|
| 715 |
|
| 716 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
|
|
| 738 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 739 |
with gr.Column(elem_classes="container"):
|
| 740 |
gr.HTML("""
|
| 741 |
+
<h1 class="main-title">🎬 NAG Video Generator with Audio (Demo)</h1>
|
| 742 |
+
<p class="subtitle">Simplified NAG T2V with MMAudio Integration</p>
|
| 743 |
""")
|
| 744 |
|
| 745 |
gr.HTML("""
|
| 746 |
<div class="info-box">
|
| 747 |
+
<p>⚠️ <strong>Demo Version:</strong> This uses a simplified model to avoid downloading 28GB of weights</p>
|
| 748 |
+
<p>🚀 <strong>NAG Technology:</strong> Normalized Attention Guidance for enhanced video quality</p>
|
| 749 |
<p>🎵 <strong>Audio:</strong> Optional synchronized audio generation with MMAudio</p>
|
| 750 |
</div>
|
| 751 |
""")
|