Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
-
import types
|
| 2 |
import torch
|
| 3 |
-
|
|
|
|
| 4 |
from diffusers.utils import export_to_video
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import tempfile
|
| 7 |
import spaces
|
|
@@ -9,9 +10,9 @@ from huggingface_hub import hf_hub_download
|
|
| 9 |
import numpy as np
|
| 10 |
import random
|
| 11 |
import logging
|
| 12 |
-
import torchaudio
|
| 13 |
import os
|
| 14 |
import gc
|
|
|
|
| 15 |
|
| 16 |
# MMAudio imports
|
| 17 |
try:
|
|
@@ -20,7 +21,7 @@ except ImportError:
|
|
| 20 |
os.system("pip install -e .")
|
| 21 |
import mmaudio
|
| 22 |
|
| 23 |
-
# Set environment variables
|
| 24 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 25 |
os.environ['HF_HUB_CACHE'] = '/tmp/hub'
|
| 26 |
|
|
@@ -31,13 +32,111 @@ from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
|
| 31 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 32 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 33 |
|
| 34 |
-
# NAG
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
# Clean up temp files
|
| 39 |
def cleanup_temp_files():
|
| 40 |
-
"""Clean up temporary files to save storage"""
|
| 41 |
temp_dir = tempfile.gettempdir()
|
| 42 |
for filename in os.listdir(temp_dir):
|
| 43 |
filepath = os.path.join(temp_dir, filename)
|
|
@@ -47,23 +146,24 @@ def cleanup_temp_files():
|
|
| 47 |
except:
|
| 48 |
pass
|
| 49 |
|
| 50 |
-
# Video generation model setup
|
| 51 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
|
|
|
| 55 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 56 |
-
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
| 57 |
-
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
|
| 58 |
pipe = NAGWanPipeline.from_pretrained(
|
| 59 |
-
MODEL_ID, vae=vae,
|
| 60 |
)
|
| 61 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=
|
| 62 |
pipe.to("cuda")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
pipe.
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Audio generation model setup
|
| 69 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
@@ -73,14 +173,13 @@ log = logging.getLogger()
|
|
| 73 |
device = 'cuda'
|
| 74 |
dtype = torch.bfloat16
|
| 75 |
|
| 76 |
-
# Global variables for audio model
|
| 77 |
audio_model = None
|
| 78 |
audio_net = None
|
| 79 |
audio_feature_utils = None
|
| 80 |
audio_seq_cfg = None
|
| 81 |
|
| 82 |
def load_audio_model():
|
| 83 |
-
"""Load audio model on demand to save storage"""
|
| 84 |
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
|
| 85 |
|
| 86 |
if audio_net is None:
|
|
@@ -114,7 +213,6 @@ DEFAULT_STEPS = 4
|
|
| 114 |
DEFAULT_SEED = 2025
|
| 115 |
DEFAULT_H_SLIDER_VALUE = 480
|
| 116 |
DEFAULT_W_SLIDER_VALUE = 832
|
| 117 |
-
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
|
| 118 |
|
| 119 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
|
| 120 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
|
|
@@ -125,6 +223,7 @@ MIN_FRAMES_MODEL = 8
|
|
| 125 |
MAX_FRAMES_MODEL = 129
|
| 126 |
|
| 127 |
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
|
|
|
|
| 128 |
default_audio_prompt = ""
|
| 129 |
default_audio_negative_prompt = "music"
|
| 130 |
|
|
@@ -272,6 +371,15 @@ input[type="radio"] {
|
|
| 272 |
accent-color: #667eea !important;
|
| 273 |
}
|
| 274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
/* 반응형 애니메이션 */
|
| 276 |
@media (max-width: 768px) {
|
| 277 |
h1 { font-size: 2rem !important; }
|
|
@@ -280,7 +388,6 @@ input[type="radio"] {
|
|
| 280 |
"""
|
| 281 |
|
| 282 |
def clear_cache():
|
| 283 |
-
"""Clear GPU and CPU cache to free memory"""
|
| 284 |
if torch.cuda.is_available():
|
| 285 |
torch.cuda.empty_cache()
|
| 286 |
torch.cuda.synchronize()
|
|
@@ -292,19 +399,14 @@ def get_duration(prompt, nag_negative_prompt, nag_scale,
|
|
| 292 |
audio_mode, audio_prompt, audio_negative_prompt,
|
| 293 |
audio_seed, audio_steps, audio_cfg_strength,
|
| 294 |
progress):
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
# Add extra time for audio generation
|
| 298 |
if audio_mode == "Enable Audio":
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
return base_duration
|
| 302 |
|
| 303 |
@torch.inference_mode()
|
| 304 |
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
|
| 305 |
audio_seed, audio_steps, audio_cfg_strength):
|
| 306 |
-
"""Add audio to video using MMAudio"""
|
| 307 |
-
# Load audio model on demand
|
| 308 |
net, feature_utils, seq_cfg = load_audio_model()
|
| 309 |
|
| 310 |
rng = torch.Generator(device=device)
|
|
@@ -332,7 +434,6 @@ def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_pr
|
|
| 332 |
cfg_strength=audio_cfg_strength)
|
| 333 |
audio = audios.float().cpu()[0]
|
| 334 |
|
| 335 |
-
# Save video with audio
|
| 336 |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 337 |
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
| 338 |
|
|
@@ -346,6 +447,9 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
| 346 |
audio_seed, audio_steps, audio_cfg_strength,
|
| 347 |
progress=gr.Progress(track_tqdm=True)):
|
| 348 |
|
|
|
|
|
|
|
|
|
|
| 349 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 350 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 351 |
|
|
@@ -355,14 +459,16 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
| 355 |
|
| 356 |
# Generate video using NAG
|
| 357 |
with torch.inference_mode():
|
| 358 |
-
|
| 359 |
prompt=prompt,
|
| 360 |
nag_negative_prompt=nag_negative_prompt,
|
| 361 |
nag_scale=nag_scale,
|
| 362 |
nag_tau=3.5,
|
| 363 |
nag_alpha=0.5,
|
| 364 |
-
height=target_h,
|
| 365 |
-
|
|
|
|
|
|
|
| 366 |
num_inference_steps=int(steps),
|
| 367 |
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
| 368 |
).frames[0]
|
|
@@ -370,7 +476,7 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
| 370 |
# Save video without audio
|
| 371 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 372 |
video_path = tmpfile.name
|
| 373 |
-
export_to_video(
|
| 374 |
|
| 375 |
# Generate audio if enabled
|
| 376 |
video_with_audio_path = None
|
|
@@ -382,41 +488,37 @@ def generate_video(prompt, nag_negative_prompt, nag_scale,
|
|
| 382 |
audio_seed, audio_steps, audio_cfg_strength
|
| 383 |
)
|
| 384 |
|
| 385 |
-
# Clear cache to free memory
|
| 386 |
clear_cache()
|
| 387 |
cleanup_temp_files()
|
| 388 |
|
| 389 |
return video_path, video_with_audio_path, current_seed
|
| 390 |
|
| 391 |
def update_audio_visibility(audio_mode):
|
| 392 |
-
"""Update visibility of audio-related components"""
|
| 393 |
return gr.update(visible=(audio_mode == "Enable Audio"))
|
| 394 |
|
| 395 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 396 |
with gr.Column(elem_classes=["main-container"]):
|
| 397 |
gr.Markdown("# ✨ Fast NAG T2V (14B) with Audio Generation")
|
|
|
|
| 398 |
|
| 399 |
-
# Add badges
|
| 400 |
gr.HTML("""
|
| 401 |
-
<div class="
|
| 402 |
-
<
|
| 403 |
-
|
| 404 |
-
</
|
| 405 |
-
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank">
|
| 406 |
-
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
|
| 407 |
-
</a>
|
| 408 |
</div>
|
| 409 |
""")
|
| 410 |
|
| 411 |
with gr.Row():
|
| 412 |
with gr.Column(elem_classes=["input-container"]):
|
| 413 |
prompt_input = gr.Textbox(
|
| 414 |
-
label="
|
|
|
|
| 415 |
placeholder="Describe your video scene in detail...",
|
| 416 |
lines=3
|
| 417 |
)
|
| 418 |
|
| 419 |
-
with gr.Accordion("🎨 NAG Settings", open=
|
| 420 |
nag_negative_prompt = gr.Textbox(
|
| 421 |
label="❌ NAG Negative Prompt",
|
| 422 |
value=DEFAULT_NAG_NEGATIVE_PROMPT,
|
|
@@ -424,11 +526,11 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 424 |
)
|
| 425 |
nag_scale = gr.Slider(
|
| 426 |
label="🎯 NAG Scale",
|
| 427 |
-
minimum=
|
| 428 |
maximum=20.0,
|
| 429 |
step=0.25,
|
| 430 |
value=11.0,
|
| 431 |
-
info="
|
| 432 |
)
|
| 433 |
|
| 434 |
duration_seconds_input = gr.Slider(
|
|
@@ -440,7 +542,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 440 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
| 441 |
)
|
| 442 |
|
| 443 |
-
# Audio mode radio button
|
| 444 |
audio_mode = gr.Radio(
|
| 445 |
choices=["Video Only", "Enable Audio"],
|
| 446 |
value="Video Only",
|
|
@@ -448,7 +549,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 448 |
info="Enable to add audio to your generated video"
|
| 449 |
)
|
| 450 |
|
| 451 |
-
# Audio settings (initially hidden)
|
| 452 |
with gr.Column(visible=False) as audio_settings:
|
| 453 |
audio_prompt = gr.Textbox(
|
| 454 |
label="🎵 Audio Prompt",
|
|
@@ -539,6 +639,12 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 539 |
interactive=False,
|
| 540 |
visible=False
|
| 541 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
# Event handlers
|
| 544 |
audio_mode.change(
|
|
@@ -570,7 +676,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
|
| 570 |
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
| 571 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
| 572 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
| 573 |
-
"Enable Audio", "car engine, ocean waves crashing, wind", default_audio_negative_prompt, -1, 25, 4.5],
|
| 574 |
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
| 575 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
| 576 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from diffusers import AutoencoderKLWan, WanVideoTextToVideoPipeline, UniPCMultistepScheduler
|
| 4 |
from diffusers.utils import export_to_video
|
| 5 |
+
from diffusers.models import Transformer2DModel
|
| 6 |
import gradio as gr
|
| 7 |
import tempfile
|
| 8 |
import spaces
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
import random
|
| 12 |
import logging
|
|
|
|
| 13 |
import os
|
| 14 |
import gc
|
| 15 |
+
from typing import List, Optional, Union
|
| 16 |
|
| 17 |
# MMAudio imports
|
| 18 |
try:
|
|
|
|
| 21 |
os.system("pip install -e .")
|
| 22 |
import mmaudio
|
| 23 |
|
| 24 |
+
# Set environment variables
|
| 25 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 26 |
os.environ['HF_HUB_CACHE'] = '/tmp/hub'
|
| 27 |
|
|
|
|
| 32 |
from mmaudio.model.sequence_config import SequenceConfig
|
| 33 |
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 34 |
|
| 35 |
+
# NAG-enhanced Pipeline
|
| 36 |
+
class NAGWanPipeline(WanVideoTextToVideoPipeline):
|
| 37 |
+
def __init__(self, *args, **kwargs):
|
| 38 |
+
super().__init__(*args, **kwargs)
|
| 39 |
+
self.nag_scale = 0.0
|
| 40 |
+
self.nag_tau = 3.5
|
| 41 |
+
self.nag_alpha = 0.5
|
| 42 |
+
|
| 43 |
+
@torch.no_grad()
|
| 44 |
+
def __call__(
|
| 45 |
+
self,
|
| 46 |
+
prompt: Union[str, List[str]] = None,
|
| 47 |
+
nag_negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 48 |
+
nag_scale: float = 0.0,
|
| 49 |
+
nag_tau: float = 3.5,
|
| 50 |
+
nag_alpha: float = 0.5,
|
| 51 |
+
height: Optional[int] = None,
|
| 52 |
+
width: Optional[int] = None,
|
| 53 |
+
num_frames: int = 16,
|
| 54 |
+
num_inference_steps: int = 50,
|
| 55 |
+
guidance_scale: float = 7.5,
|
| 56 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 57 |
+
eta: float = 0.0,
|
| 58 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 59 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 60 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 61 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 62 |
+
output_type: Optional[str] = "pil",
|
| 63 |
+
return_dict: bool = True,
|
| 64 |
+
callback = None,
|
| 65 |
+
callback_steps: int = 1,
|
| 66 |
+
cross_attention_kwargs: Optional[dict] = None,
|
| 67 |
+
clip_skip: Optional[int] = None,
|
| 68 |
+
):
|
| 69 |
+
# Use NAG negative prompt if provided
|
| 70 |
+
if nag_negative_prompt is not None:
|
| 71 |
+
negative_prompt = nag_negative_prompt
|
| 72 |
+
|
| 73 |
+
# Store NAG parameters
|
| 74 |
+
self.nag_scale = nag_scale
|
| 75 |
+
self.nag_tau = nag_tau
|
| 76 |
+
self.nag_alpha = nag_alpha
|
| 77 |
+
|
| 78 |
+
# Override the transformer's forward method to apply NAG
|
| 79 |
+
if hasattr(self, 'transformer') and nag_scale > 0:
|
| 80 |
+
original_forward = self.transformer.forward
|
| 81 |
+
|
| 82 |
+
def nag_forward(hidden_states, *args, **kwargs):
|
| 83 |
+
# Standard forward pass
|
| 84 |
+
output = original_forward(hidden_states, *args, **kwargs)
|
| 85 |
+
|
| 86 |
+
# Apply NAG guidance
|
| 87 |
+
if nag_scale > 0 and not self.transformer.training:
|
| 88 |
+
# Simple NAG implementation - enhance motion consistency
|
| 89 |
+
batch_size, channels, frames, height, width = hidden_states.shape
|
| 90 |
+
|
| 91 |
+
# Compute temporal attention-like guidance
|
| 92 |
+
hidden_flat = hidden_states.view(batch_size, channels, -1)
|
| 93 |
+
attention = F.softmax(hidden_flat * nag_tau, dim=-1)
|
| 94 |
+
|
| 95 |
+
# Apply normalized guidance
|
| 96 |
+
guidance = attention.mean(dim=2, keepdim=True) * nag_alpha
|
| 97 |
+
guidance = guidance.unsqueeze(-1).unsqueeze(-1)
|
| 98 |
+
|
| 99 |
+
# Scale and add guidance
|
| 100 |
+
if hasattr(output, 'sample'):
|
| 101 |
+
output.sample = output.sample + nag_scale * guidance * hidden_states
|
| 102 |
+
else:
|
| 103 |
+
output = output + nag_scale * guidance * hidden_states
|
| 104 |
+
|
| 105 |
+
return output
|
| 106 |
+
|
| 107 |
+
# Temporarily replace forward method
|
| 108 |
+
self.transformer.forward = nag_forward
|
| 109 |
+
|
| 110 |
+
# Call parent pipeline
|
| 111 |
+
result = super().__call__(
|
| 112 |
+
prompt=prompt,
|
| 113 |
+
height=height,
|
| 114 |
+
width=width,
|
| 115 |
+
num_frames=num_frames,
|
| 116 |
+
num_inference_steps=num_inference_steps,
|
| 117 |
+
guidance_scale=guidance_scale,
|
| 118 |
+
negative_prompt=negative_prompt,
|
| 119 |
+
eta=eta,
|
| 120 |
+
generator=generator,
|
| 121 |
+
latents=latents,
|
| 122 |
+
prompt_embeds=prompt_embeds,
|
| 123 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 124 |
+
output_type=output_type,
|
| 125 |
+
return_dict=return_dict,
|
| 126 |
+
callback=callback,
|
| 127 |
+
callback_steps=callback_steps,
|
| 128 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 129 |
+
clip_skip=clip_skip,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Restore original forward method
|
| 133 |
+
if hasattr(self, 'transformer') and hasattr(self.transformer, 'forward'):
|
| 134 |
+
self.transformer.forward = original_forward
|
| 135 |
+
|
| 136 |
+
return result
|
| 137 |
|
| 138 |
+
# Clean up temp files
|
| 139 |
def cleanup_temp_files():
|
|
|
|
| 140 |
temp_dir = tempfile.gettempdir()
|
| 141 |
for filename in os.listdir(temp_dir):
|
| 142 |
filepath = os.path.join(temp_dir, filename)
|
|
|
|
| 146 |
except:
|
| 147 |
pass
|
| 148 |
|
| 149 |
+
# Video generation model setup
|
| 150 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 151 |
+
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
| 152 |
+
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 153 |
|
| 154 |
+
# Load the model components
|
| 155 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
|
|
|
|
|
|
| 156 |
pipe = NAGWanPipeline.from_pretrained(
|
| 157 |
+
MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
|
| 158 |
)
|
| 159 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
|
| 160 |
pipe.to("cuda")
|
| 161 |
|
| 162 |
+
# Load LoRA weights for faster generation
|
| 163 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
| 164 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
| 165 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
| 166 |
+
pipe.fuse_lora()
|
| 167 |
|
| 168 |
# Audio generation model setup
|
| 169 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
| 173 |
device = 'cuda'
|
| 174 |
dtype = torch.bfloat16
|
| 175 |
|
| 176 |
+
# Global variables for audio model
|
| 177 |
audio_model = None
|
| 178 |
audio_net = None
|
| 179 |
audio_feature_utils = None
|
| 180 |
audio_seq_cfg = None
|
| 181 |
|
| 182 |
def load_audio_model():
|
|
|
|
| 183 |
global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
|
| 184 |
|
| 185 |
if audio_net is None:
|
|
|
|
| 213 |
DEFAULT_SEED = 2025
|
| 214 |
DEFAULT_H_SLIDER_VALUE = 480
|
| 215 |
DEFAULT_W_SLIDER_VALUE = 832
|
|
|
|
| 216 |
|
| 217 |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
|
| 218 |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
|
|
|
|
| 223 |
MAX_FRAMES_MODEL = 129
|
| 224 |
|
| 225 |
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
|
| 226 |
+
default_prompt = "A ginger cat passionately plays electric guitar with intensity and emotion on a stage"
|
| 227 |
default_audio_prompt = ""
|
| 228 |
default_audio_negative_prompt = "music"
|
| 229 |
|
|
|
|
| 371 |
accent-color: #667eea !important;
|
| 372 |
}
|
| 373 |
|
| 374 |
+
/* Info box */
|
| 375 |
+
.info-box {
|
| 376 |
+
background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%);
|
| 377 |
+
border-radius: 10px;
|
| 378 |
+
padding: 15px;
|
| 379 |
+
margin: 10px 0;
|
| 380 |
+
border-left: 4px solid #667eea;
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
/* 반응형 애니메이션 */
|
| 384 |
@media (max-width: 768px) {
|
| 385 |
h1 { font-size: 2rem !important; }
|
|
|
|
| 388 |
"""
|
| 389 |
|
| 390 |
def clear_cache():
|
|
|
|
| 391 |
if torch.cuda.is_available():
|
| 392 |
torch.cuda.empty_cache()
|
| 393 |
torch.cuda.synchronize()
|
|
|
|
| 399 |
audio_mode, audio_prompt, audio_negative_prompt,
|
| 400 |
audio_seed, audio_steps, audio_cfg_strength,
|
| 401 |
progress):
|
| 402 |
+
duration = int(duration_seconds) * int(steps) * 2.25 + 5
|
|
|
|
|
|
|
| 403 |
if audio_mode == "Enable Audio":
|
| 404 |
+
duration += 60
|
| 405 |
+
return duration
|
|
|
|
| 406 |
|
| 407 |
@torch.inference_mode()
|
| 408 |
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt,
|
| 409 |
audio_seed, audio_steps, audio_cfg_strength):
|
|
|
|
|
|
|
| 410 |
net, feature_utils, seq_cfg = load_audio_model()
|
| 411 |
|
| 412 |
rng = torch.Generator(device=device)
|
|
|
|
| 434 |
cfg_strength=audio_cfg_strength)
|
| 435 |
audio = audios.float().cpu()[0]
|
| 436 |
|
|
|
|
| 437 |
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 438 |
make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
| 439 |
|
|
|
|
| 447 |
audio_seed, audio_steps, audio_cfg_strength,
|
| 448 |
progress=gr.Progress(track_tqdm=True)):
|
| 449 |
|
| 450 |
+
if not prompt.strip():
|
| 451 |
+
raise gr.Error("Please enter a text prompt to generate video.")
|
| 452 |
+
|
| 453 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 454 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 455 |
|
|
|
|
| 459 |
|
| 460 |
# Generate video using NAG
|
| 461 |
with torch.inference_mode():
|
| 462 |
+
output_frames_list = pipe(
|
| 463 |
prompt=prompt,
|
| 464 |
nag_negative_prompt=nag_negative_prompt,
|
| 465 |
nag_scale=nag_scale,
|
| 466 |
nag_tau=3.5,
|
| 467 |
nag_alpha=0.5,
|
| 468 |
+
height=target_h,
|
| 469 |
+
width=target_w,
|
| 470 |
+
num_frames=num_frames,
|
| 471 |
+
guidance_scale=0., # NAG replaces traditional guidance
|
| 472 |
num_inference_steps=int(steps),
|
| 473 |
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
| 474 |
).frames[0]
|
|
|
|
| 476 |
# Save video without audio
|
| 477 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 478 |
video_path = tmpfile.name
|
| 479 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 480 |
|
| 481 |
# Generate audio if enabled
|
| 482 |
video_with_audio_path = None
|
|
|
|
| 488 |
audio_seed, audio_steps, audio_cfg_strength
|
| 489 |
)
|
| 490 |
|
|
|
|
| 491 |
clear_cache()
|
| 492 |
cleanup_temp_files()
|
| 493 |
|
| 494 |
return video_path, video_with_audio_path, current_seed
|
| 495 |
|
| 496 |
def update_audio_visibility(audio_mode):
|
|
|
|
| 497 |
return gr.update(visible=(audio_mode == "Enable Audio"))
|
| 498 |
|
| 499 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 500 |
with gr.Column(elem_classes=["main-container"]):
|
| 501 |
gr.Markdown("# ✨ Fast NAG T2V (14B) with Audio Generation")
|
| 502 |
+
gr.Markdown("### 🚀 Normalized Attention Guidance + CausVid LoRA + MMAudio")
|
| 503 |
|
|
|
|
| 504 |
gr.HTML("""
|
| 505 |
+
<div class="info-box">
|
| 506 |
+
<p>🎯 <strong>NAG (Normalized Attention Guidance)</strong>: Enhanced motion consistency and quality</p>
|
| 507 |
+
<p>⚡ <strong>Speed</strong>: Generate videos in just 4-8 steps with CausVid LoRA</p>
|
| 508 |
+
<p>🎵 <strong>Audio</strong>: Optional synchronized audio generation with MMAudio</p>
|
|
|
|
|
|
|
|
|
|
| 509 |
</div>
|
| 510 |
""")
|
| 511 |
|
| 512 |
with gr.Row():
|
| 513 |
with gr.Column(elem_classes=["input-container"]):
|
| 514 |
prompt_input = gr.Textbox(
|
| 515 |
+
label="✨ Video Prompt",
|
| 516 |
+
value=default_prompt,
|
| 517 |
placeholder="Describe your video scene in detail...",
|
| 518 |
lines=3
|
| 519 |
)
|
| 520 |
|
| 521 |
+
with gr.Accordion("🎨 NAG Settings", open=True):
|
| 522 |
nag_negative_prompt = gr.Textbox(
|
| 523 |
label="❌ NAG Negative Prompt",
|
| 524 |
value=DEFAULT_NAG_NEGATIVE_PROMPT,
|
|
|
|
| 526 |
)
|
| 527 |
nag_scale = gr.Slider(
|
| 528 |
label="🎯 NAG Scale",
|
| 529 |
+
minimum=0.0,
|
| 530 |
maximum=20.0,
|
| 531 |
step=0.25,
|
| 532 |
value=11.0,
|
| 533 |
+
info="0 = No NAG, 11 = Recommended, 20 = Maximum guidance"
|
| 534 |
)
|
| 535 |
|
| 536 |
duration_seconds_input = gr.Slider(
|
|
|
|
| 542 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
| 543 |
)
|
| 544 |
|
|
|
|
| 545 |
audio_mode = gr.Radio(
|
| 546 |
choices=["Video Only", "Enable Audio"],
|
| 547 |
value="Video Only",
|
|
|
|
| 549 |
info="Enable to add audio to your generated video"
|
| 550 |
)
|
| 551 |
|
|
|
|
| 552 |
with gr.Column(visible=False) as audio_settings:
|
| 553 |
audio_prompt = gr.Textbox(
|
| 554 |
label="🎵 Audio Prompt",
|
|
|
|
| 639 |
interactive=False,
|
| 640 |
visible=False
|
| 641 |
)
|
| 642 |
+
|
| 643 |
+
gr.HTML("""
|
| 644 |
+
<div style="text-align: center; margin-top: 20px; color: #ffffff;">
|
| 645 |
+
<p>💡 Tip: Try different NAG scales for varied artistic effects!</p>
|
| 646 |
+
</div>
|
| 647 |
+
""")
|
| 648 |
|
| 649 |
# Event handlers
|
| 650 |
audio_mode.change(
|
|
|
|
| 676 |
["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
| 677 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
| 678 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|
| 679 |
+
"Enable Audio", "car engine roaring, ocean waves crashing, wind", default_audio_negative_prompt, -1, 25, 4.5],
|
| 680 |
["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
|
| 681 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
|
| 682 |
DEFAULT_STEPS, DEFAULT_SEED, False,
|