""" Build a graph to solve gala problems. """ import os from langchain_core.tools import tool from langchain_groq import ChatGroq from langchain_community.tools.tavily_search import TavilySearchResults from langgraph.graph import START, StateGraph, MessagesState, END from langgraph.prebuilt import tools_condition, ToolNode from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} SYSTEM_PROMPT = """ You are a helpful assistant that can solve problems using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """ tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] def build_graph(): """ Build a graph to solve gala problems. """ model = HuggingFaceEndpoint( repo_id="Qwen/QwQ-32B", # 模型ID task="text-generation", # 任务类型 temperature=0.7, max_new_tokens=512, huggingfacehub_api_token=os.getenv('HUGGINGFACE_API_TOKEN'), top_p=0.95, ) llm = ChatHuggingFace(llm=model) # llm = ChatGroq(model="qwen-qwq-32b", temperature=0) llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" print(state["messages"]) return {"messages": [llm_with_tools.invoke(state["messages"])]} def end(state: MessagesState): """End node""" return {"messages": [HumanMessage(content="FINAL ANSWER: " + state["messages"][-1].content)]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", tools_condition ) builder.add_edge("tools", "assistant") builder.add_edge("assistant", END) # Compile graph return builder.compile() if __name__ == "__main__": from pprint import pprint graph = build_graph() messages = [SystemMessage(content=SYSTEM_PROMPT), HumanMessage(content="What is the capital of France?")] msg = graph.invoke({"messages": messages}) for m in msg["messages"]: m.pretty_print()