Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from pipeline_controlnet_sd_xl_raw import StableDiffusionXLControlNetRAWPipeline | |
| from diffusers import ControlNetModel, UniPCMultistepScheduler | |
| from torchvision import transforms | |
| from PIL import Image | |
| import traceback | |
| # ========== 1. Load Models ========== | |
| pipe = StableDiffusionXLControlNetRAWPipeline.from_pretrained( | |
| "wencheng256/DiffusionRAW", | |
| torch_dtype=torch.float16 | |
| ) | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload() | |
| # ========== 2. Utility function: tensor -> PIL ========== | |
| def tensor_to_pil(img_tensor: torch.Tensor) -> Image.Image: | |
| if img_tensor.is_cuda: | |
| img_tensor = img_tensor.cpu() | |
| if img_tensor.dtype != torch.float32: | |
| img_tensor = img_tensor.float() | |
| img_tensor = img_tensor.clamp(0, 1) | |
| return transforms.ToPILImage()(img_tensor) | |
| # ========== 3. Load a .pth file ========== | |
| def load_pth_data(pth_path): | |
| data = torch.load(pth_path) | |
| rgb_tensor = data["rgb"] | |
| raw_tensor = data["raw"] | |
| mask_tensor = data["mask"] | |
| cond_tensor = data["condition"] | |
| raw_image_pil = tensor_to_pil(raw_tensor[0][:, :448]) | |
| rgb_tensor_pil = tensor_to_pil(torch.flip(rgb_tensor[0], dims=[0])[:, :448]) | |
| mask_image_pil = tensor_to_pil(1 - mask_tensor[0]) | |
| return rgb_tensor_pil, raw_image_pil, mask_image_pil, raw_tensor, mask_tensor, cond_tensor | |
| # ========== 4. Inference function ========== | |
| def infer_fn(prompt, mask_edited, raw_tensor_state, mask_tensor_state, cond_tensor_state): | |
| try: | |
| if isinstance(mask_edited, dict): | |
| mask_edited = mask_edited["composite"] | |
| mask_edited_tensor = transforms.ToTensor()(mask_edited) | |
| mask_edited_tensor = 1-mask_edited_tensor[:1].unsqueeze(0).half() | |
| raw_t = raw_tensor_state.half() | |
| cond_t = cond_tensor_state.half() | |
| generator = torch.manual_seed(0) | |
| result = pipe( | |
| prompt=prompt, | |
| num_inference_steps=20, | |
| generator=generator, | |
| image=raw_t, | |
| mask_image=mask_edited_tensor, | |
| control_image=cond_t | |
| ).images[0] | |
| return tensor_to_pil(result), mask_edited | |
| except Exception as e: | |
| traceback.print_exc() | |
| return "Error occurred during inference. Please check the terminal logs!" | |
| # ========== 5. Build Gradio App ========== | |
| def build_demo(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# DiffusionRAW") | |
| pth_options = ["./data1.pth", "./data2.pth", "./data3.pth"] | |
| pth_selector = gr.Dropdown(choices=pth_options, value=pth_options[0], label="Select a PTH file") | |
| load_button = gr.Button("Load") | |
| with gr.Row(): | |
| raw_display = gr.Image(label="Raw Image", interactive=False) | |
| rgb_display = gr.Image(label="sRGB Image", interactive=False) | |
| mask_editor = gr.Sketchpad( | |
| label="Mask (Sketch)", | |
| interactive=True, | |
| width=512, | |
| height=512 | |
| ) | |
| raw_tensor_state = gr.State() | |
| mask_tensor_state = gr.State() | |
| cond_tensor_state = gr.State() | |
| load_button.click( | |
| fn=load_pth_data, | |
| inputs=[pth_selector], | |
| outputs=[ | |
| rgb_display, | |
| raw_display, | |
| mask_editor, | |
| raw_tensor_state, | |
| mask_tensor_state, | |
| cond_tensor_state | |
| ] | |
| ) | |
| prompt_input = gr.Textbox(label="Prompt", value="An RAW Image.", lines=1) | |
| generate_button = gr.Button("Generate") | |
| output_image = gr.Image(label="Output") | |
| generate_button.click( | |
| fn=infer_fn, | |
| inputs=[ | |
| prompt_input, | |
| mask_editor, | |
| raw_tensor_state, | |
| mask_tensor_state, | |
| cond_tensor_state | |
| ], | |
| outputs=[output_image, rgb_display] | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.launch() | |