Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -276,8 +276,8 @@ def trainer_to_cuda(self,
|
|
| 276 |
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
|
| 277 |
|
| 278 |
|
| 279 |
-
logger.info("***** Running training *****")
|
| 280 |
-
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
| 281 |
|
| 282 |
|
| 283 |
#.......................loop training............................
|
|
@@ -526,11 +526,11 @@ def trainer_to_cuda(self,
|
|
| 526 |
|
| 527 |
self.save_pretrained(path_save_model)
|
| 528 |
|
| 529 |
-
logger.info("Running final full generations samples... ")
|
| 530 |
|
| 531 |
|
| 532 |
|
| 533 |
-
logger.info("***** Training / Inference Done *****")
|
| 534 |
def modelspeech(texts):
|
| 535 |
|
| 536 |
|
|
@@ -572,6 +572,10 @@ ctrain_datasets,eval_dataset,full_generation_dataset=get_data_loader(train_datas
|
|
| 572 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 573 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
| 574 |
device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 575 |
def greet(text,id):
|
| 576 |
global GK
|
| 577 |
b=int(id)
|
|
@@ -583,3 +587,50 @@ def greet(text,id):
|
|
| 583 |
|
| 584 |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text")
|
| 585 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1)
|
| 277 |
|
| 278 |
|
| 279 |
+
# logger.info("***** Running training *****")
|
| 280 |
+
# logger.info(f" Num Epochs = {training_args.num_train_epochs}")
|
| 281 |
|
| 282 |
|
| 283 |
#.......................loop training............................
|
|
|
|
| 526 |
|
| 527 |
self.save_pretrained(path_save_model)
|
| 528 |
|
| 529 |
+
# logger.info("Running final full generations samples... ")
|
| 530 |
|
| 531 |
|
| 532 |
|
| 533 |
+
# logger.info("***** Training / Inference Done *****")
|
| 534 |
def modelspeech(texts):
|
| 535 |
|
| 536 |
|
|
|
|
| 572 |
eval_dataset_dir = os.path.join(dataset_dir,'eval'),
|
| 573 |
full_generation_dir = os.path.join(dataset_dir,'full_generation'),
|
| 574 |
device=device)
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
|
| 579 |
def greet(text,id):
|
| 580 |
global GK
|
| 581 |
b=int(id)
|
|
|
|
| 587 |
|
| 588 |
demo = gr.Interface(fn=greet, inputs=["text","text"], outputs="text")
|
| 589 |
demo.launch()
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
raining_args.weight_kl=1
|
| 593 |
+
training_args.d_learning_rate=2e-4
|
| 594 |
+
training_args.learning_rate=2e-4
|
| 595 |
+
training_args.weight_mel=45
|
| 596 |
+
training_args.num_train_epochs=4
|
| 597 |
+
training_args.eval_steps=1000
|
| 598 |
+
global_step=0
|
| 599 |
+
dir_model='wasmdashai/vits-ar-huba-fine'
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
wandb.login(key= "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79")
|
| 604 |
+
wandb.init(project= 'AZ',config = training_args.to_dict())
|
| 605 |
+
|
| 606 |
+
for i in range(10000):
|
| 607 |
+
# model.train(True)
|
| 608 |
+
print(f'clcye epochs ={i}')
|
| 609 |
+
model=VitsModel.from_pretrained(dir_model).to(device)
|
| 610 |
+
# model.setMfA(monotonic_align.maximum_path)
|
| 611 |
+
#dir_model_save=dir_model+'/vend'
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
trainer_to_cuda(model,
|
| 615 |
+
ctrain_datasets = ctrain_datasets,
|
| 616 |
+
eval_dataset = eval_dataset,
|
| 617 |
+
full_generation_dataset = ctrain_datasets[0][0],
|
| 618 |
+
feature_extractor = VitsFeatureExtractor(),
|
| 619 |
+
training_args = training_args,
|
| 620 |
+
full_generation_sample_index= -1,
|
| 621 |
+
project_name = "AZ",
|
| 622 |
+
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
|
| 623 |
+
is_used_text_encoder=True,
|
| 624 |
+
is_used_posterior_encode=True,
|
| 625 |
+
# dict_state_grad_loss=sgl,
|
| 626 |
+
nk=50,
|
| 627 |
+
path_save_model=dir_model,
|
| 628 |
+
maf=monotonic_align.maximum_path,
|
| 629 |
+
|
| 630 |
+
n_back_save_model=3000,
|
| 631 |
+
start_speeker=0,
|
| 632 |
+
end_speeker=1,
|
| 633 |
+
n_epoch=i*training_args.num_train_epochs,
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
)
|