Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| import json | |
| from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, CUSTOM_MESSAGE | |
| from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub | |
| from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message | |
| from datetime import datetime, timezone | |
| LAST_UPDATED = "Sep 9th 2023" | |
| column_names = { | |
| "MODEL": "Model", | |
| "Avg. WER": "Average WER β¬οΈ", | |
| "RTF": "RTF (1e-3) β¬οΈ", | |
| "Common Voice WER": "Common Voice WER β¬οΈ", | |
| "D_AVG_CV_WER": "Delta AVG-CV WER", | |
| } | |
| # Skipping testings just uing the numbers computed in the original space for my sanity sake | |
| # eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub() | |
| # if not csv_results.exists(): | |
| # raise Exception(f"CSV file {csv_results} does not exist locally") | |
| # # Get csv with data and parse columns | |
| # original_df = pd.read_csv(csv_results) | |
| data = [ | |
| ["nvidia/stt_en_fastconformer_transducer_xlarge", | |
| 12.3, 8.06, 7.26], | |
| ["nvidia/stt_en_fastconformer_transducer_xxlarge", | |
| 14.4, 8.07, 6.07], | |
| ["openai/whisper-large-v2", | |
| 12.7, 8.16, 10.12], | |
| ["nvidia/stt_en_fastconformer_ctc_xxlarge", | |
| 5, 8.34, 8.31], | |
| ["nvidia/stt_en_conformer_ctc_large", | |
| 7.5, 8.39, 9.1], | |
| ["openai/whisper-medium.en", | |
| 10.7, 8.5, 11.96], | |
| ["nvidia/stt_en_fastconformer_ctc_xlarge", | |
| 2.9, 8.52, 7.51], | |
| ["nvidia/stt_en_fastconformer_ctc_large", | |
| 1.8, 8.9, 8.56], | |
| ["nvidia/stt_en_fastconformer_transducer_large", | |
| 10.4, 8.94, 8.04], | |
| ["openai/whisper-large", | |
| 12.7, 9.2, 10.92], | |
| ["nvidia/stt_en_conformer_transducer_large", | |
| 21.8, 9.27, 7.36], | |
| ["openai/whisper-small.en", | |
| 8.3, 9.34, 15.13], | |
| ["nvidia/stt_en_conformer_transducer_small", | |
| 17.7, 10.81, 14.35], | |
| ["openai/whisper-base.en", | |
| 7.2, 11.67, 21.77], | |
| ["nvidia/stt_en_conformer_ctc_small", | |
| 3.2, 11.77, 16.59], | |
| ["patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram", | |
| 20.1, 13.65, 20.05], | |
| ["facebook/wav2vec2-large-960h-lv60-self", | |
| 2.5, 14.47, 22.15], | |
| ["openai/whisper-tiny.en", | |
| 9.1, 14.96, 31.09], | |
| ["patrickvonplaten/hubert-xlarge-ls960-ft-4-gram", | |
| 24.5, 15.11, 19.16], | |
| ["speechbrain/asr-wav2vec2-librispeech", | |
| 2.6, 15.61, 23.71], | |
| ["facebook/hubert-xlarge-ls960-ft", | |
| 6.3, 15.81, 22.05], | |
| ["facebook/mms-1b-all", | |
| 5.9, 15.85, 21.23], | |
| ["facebook/hubert-large-ls960-ft", | |
| 2.6, 15.93, 23.12], | |
| ["facebook/wav2vec2-large-robust-ft-libri-960h", | |
| 2.7, 16.07, 22.57], | |
| ["facebook/wav2vec2-conformer-rel-pos-large-960h-ft", | |
| 5.2, 17, 23.01], | |
| ["facebook/wav2vec2-conformer-rope-large-960h-ft", | |
| 7.8, 17.06, 23.08], | |
| ["facebook/wav2vec2-large-960h", | |
| 1.8, 21.76, 34.01], | |
| ["facebook/wav2vec2-base-960h", | |
| 1.2, 26.41, 41.75] | |
| ] | |
| columns = [ | |
| "Model", "RTF (1e-3) β¬οΈ", "Average WER β¬οΈ", "Common Voice WER β¬οΈ" | |
| ] | |
| original_df = pd.DataFrame(data, columns=columns) | |
| # Formats the columns | |
| def formatter(x): | |
| x = round(x, 2) | |
| return x | |
| for col in original_df.columns: | |
| if col.lower() == "model": | |
| original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
| else: | |
| original_df[col] = original_df[col].apply(formatter) # For numerical values | |
| original_df.rename(columns=column_names, inplace=True) | |
| # Compute delta between average WER and CV WER | |
| original_df['Abs. Detla WER'] = abs(original_df['Average WER β¬οΈ'] - original_df['Common Voice WER β¬οΈ']) | |
| original_df['Abs. Detla WER'] = pd.to_numeric(original_df['Abs. Detla WER'], errors='coerce') # Convert to numerical data type | |
| original_df['Abs. Detla WER'] = original_df['Abs. Detla WER'].apply(lambda x: round(x, 2) if not pd.isna(x) else x) # Round and handle NaN values | |
| original_df.sort_values(by='Abs. Detla WER', inplace=True) | |
| COLS = [c.name for c in fields(AutoEvalColumn)] | |
| TYPES = [c.type for c in fields(AutoEvalColumn)] | |
| def request_model(model_text, chbcoco2017): | |
| # Determine the selected checkboxes | |
| dataset_selection = [] | |
| if chbcoco2017: | |
| dataset_selection.append("ESB Datasets tests only") | |
| if len(dataset_selection) == 0: | |
| return styled_error("You need to select at least one dataset") | |
| base_model_on_hub, error_msg = is_model_on_hub(model_text) | |
| if not base_model_on_hub: | |
| return styled_error(f"Base model '{model_text}' {error_msg}") | |
| # Construct the output dictionary | |
| current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
| required_datasets = ', '.join(dataset_selection) | |
| eval_entry = { | |
| "date": current_time, | |
| "model": model_text, | |
| "datasets_selected": required_datasets | |
| } | |
| # Prepare file path | |
| DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True) | |
| fn_datasets = '@ '.join(dataset_selection) | |
| filename = model_text.replace("/","@") + "@@" + fn_datasets | |
| if filename in requested_models: | |
| return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.") | |
| try: | |
| filename_ext = filename + ".txt" | |
| out_filepath = DIR_OUTPUT_REQUESTS / filename_ext | |
| # Write the results to a text file | |
| with open(out_filepath, "w") as f: | |
| f.write(json.dumps(eval_entry)) | |
| upload_file(filename, out_filepath) | |
| # Include file in the list of uploaded files | |
| requested_models.append(filename) | |
| # Remove the local file | |
| out_filepath.unlink() | |
| return styled_message("π€ Your request has been submitted and will be evaluated soon!</p>") | |
| except Exception as e: | |
| return styled_error(f"Error submitting request!") | |
| with gr.Blocks() as demo: | |
| gr.HTML(BANNER, elem_id="banner") | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| gr.Markdown(CUSTOM_MESSAGE, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
| leaderboard_table = gr.components.Dataframe( | |
| value=original_df, | |
| datatype=TYPES, | |
| max_rows=None, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1): | |
| gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=2): | |
| with gr.Column(): | |
| gr.Markdown("# βοΈβ¨ Request results for a new model here!", elem_classes="markdown-text") | |
| with gr.Column(): | |
| gr.Markdown("Select a dataset:", elem_classes="markdown-text") | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") | |
| chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False) | |
| with gr.Column(): | |
| mdw_submission_result = gr.Markdown() | |
| btn_submitt = gr.Button(value="π Request") | |
| btn_submitt.click(request_model, | |
| [model_name_textbox, chb_coco2017], | |
| mdw_submission_result) | |
| gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| gr.Textbox( | |
| value=CITATION_TEXT, lines=7, | |
| label="Copy the BibTeX snippet to cite this source", | |
| elem_id="citation-button", | |
| ).style(show_copy_button=True) | |
| demo.launch() | |