Spaces:
Runtime error
Runtime error
Commit
·
2900eb1
1
Parent(s):
dfbca8a
add: LlamaGuardFineTuner.train
Browse files
guardrails_genie/train/llama_guard.py
CHANGED
|
@@ -1,11 +1,18 @@
|
|
|
|
|
|
|
|
| 1 |
import plotly.graph_objects as go
|
| 2 |
import streamlit as st
|
| 3 |
import torch
|
|
|
|
| 4 |
import torch.nn.functional as F
|
|
|
|
|
|
|
| 5 |
from datasets import load_dataset
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from rich.progress import track
|
|
|
|
| 8 |
from sklearn.metrics import roc_auc_score, roc_curve
|
|
|
|
| 9 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 10 |
|
| 11 |
|
|
@@ -16,7 +23,11 @@ class DatasetArgs(BaseModel):
|
|
| 16 |
|
| 17 |
|
| 18 |
class LlamaGuardFineTuner:
|
| 19 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
self.streamlit_mode = streamlit_mode
|
| 21 |
|
| 22 |
def load_dataset(self, dataset_args: DatasetArgs):
|
|
@@ -36,6 +47,7 @@ class LlamaGuardFineTuner:
|
|
| 36 |
|
| 37 |
def load_model(self, model_name: str = "meta-llama/Prompt-Guard-86M"):
|
| 38 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 39 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
|
| 41 |
self.device
|
|
@@ -101,7 +113,6 @@ class LlamaGuardFineTuner:
|
|
| 101 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
| 102 |
fpr, tpr, _ = roc_curve(test_labels, test_scores)
|
| 103 |
roc_auc = roc_auc_score(test_labels, test_scores)
|
| 104 |
-
|
| 105 |
fig = go.Figure()
|
| 106 |
fig.add_trace(
|
| 107 |
go.Scatter(
|
|
@@ -121,7 +132,6 @@ class LlamaGuardFineTuner:
|
|
| 121 |
line=dict(color="navy", width=2, dash="dash"),
|
| 122 |
)
|
| 123 |
)
|
| 124 |
-
|
| 125 |
fig.update_layout(
|
| 126 |
title="Receiver Operating Characteristic",
|
| 127 |
xaxis_title="False Positive Rate",
|
|
@@ -130,7 +140,6 @@ class LlamaGuardFineTuner:
|
|
| 130 |
yaxis=dict(range=[0.0, 1.05]),
|
| 131 |
legend=dict(x=0.8, y=0.2),
|
| 132 |
)
|
| 133 |
-
|
| 134 |
if self.streamlit_mode:
|
| 135 |
st.plotly_chart(fig)
|
| 136 |
else:
|
|
@@ -140,10 +149,7 @@ class LlamaGuardFineTuner:
|
|
| 140 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
| 141 |
positive_scores = [scores[i] for i in range(500) if test_labels[i] == 1]
|
| 142 |
negative_scores = [scores[i] for i in range(500) if test_labels[i] == 0]
|
| 143 |
-
|
| 144 |
fig = go.Figure()
|
| 145 |
-
|
| 146 |
-
# Plotting positive scores
|
| 147 |
fig.add_trace(
|
| 148 |
go.Histogram(
|
| 149 |
x=positive_scores,
|
|
@@ -153,8 +159,6 @@ class LlamaGuardFineTuner:
|
|
| 153 |
opacity=0.75,
|
| 154 |
)
|
| 155 |
)
|
| 156 |
-
|
| 157 |
-
# Plotting negative scores
|
| 158 |
fig.add_trace(
|
| 159 |
go.Histogram(
|
| 160 |
x=negative_scores,
|
|
@@ -164,8 +168,6 @@ class LlamaGuardFineTuner:
|
|
| 164 |
opacity=0.75,
|
| 165 |
)
|
| 166 |
)
|
| 167 |
-
|
| 168 |
-
# Updating layout
|
| 169 |
fig.update_layout(
|
| 170 |
title="Score Distribution for Positive and Negative Examples",
|
| 171 |
xaxis_title="Score",
|
|
@@ -173,8 +175,6 @@ class LlamaGuardFineTuner:
|
|
| 173 |
barmode="overlay",
|
| 174 |
legend_title="Scores",
|
| 175 |
)
|
| 176 |
-
|
| 177 |
-
# Display the plot
|
| 178 |
if self.streamlit_mode:
|
| 179 |
st.plotly_chart(fig)
|
| 180 |
else:
|
|
@@ -199,3 +199,53 @@ class LlamaGuardFineTuner:
|
|
| 199 |
self.visualize_roc_curve(test_scores)
|
| 200 |
self.visualize_score_distribution(test_scores)
|
| 201 |
return test_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
import streamlit as st
|
| 5 |
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
import torch.nn.functional as F
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
import wandb
|
| 10 |
from datasets import load_dataset
|
| 11 |
from pydantic import BaseModel
|
| 12 |
from rich.progress import track
|
| 13 |
+
from safetensors.torch import save_model
|
| 14 |
from sklearn.metrics import roc_auc_score, roc_curve
|
| 15 |
+
from torch.utils.data import DataLoader
|
| 16 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 17 |
|
| 18 |
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
class LlamaGuardFineTuner:
|
| 26 |
+
def __init__(
|
| 27 |
+
self, wandb_project: str, wandb_entity: str, streamlit_mode: bool = False
|
| 28 |
+
):
|
| 29 |
+
self.wandb_project = wandb_project
|
| 30 |
+
self.wandb_entity = wandb_entity
|
| 31 |
self.streamlit_mode = streamlit_mode
|
| 32 |
|
| 33 |
def load_dataset(self, dataset_args: DatasetArgs):
|
|
|
|
| 47 |
|
| 48 |
def load_model(self, model_name: str = "meta-llama/Prompt-Guard-86M"):
|
| 49 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 50 |
+
self.model_name = model_name
|
| 51 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 52 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
|
| 53 |
self.device
|
|
|
|
| 113 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
| 114 |
fpr, tpr, _ = roc_curve(test_labels, test_scores)
|
| 115 |
roc_auc = roc_auc_score(test_labels, test_scores)
|
|
|
|
| 116 |
fig = go.Figure()
|
| 117 |
fig.add_trace(
|
| 118 |
go.Scatter(
|
|
|
|
| 132 |
line=dict(color="navy", width=2, dash="dash"),
|
| 133 |
)
|
| 134 |
)
|
|
|
|
| 135 |
fig.update_layout(
|
| 136 |
title="Receiver Operating Characteristic",
|
| 137 |
xaxis_title="False Positive Rate",
|
|
|
|
| 140 |
yaxis=dict(range=[0.0, 1.05]),
|
| 141 |
legend=dict(x=0.8, y=0.2),
|
| 142 |
)
|
|
|
|
| 143 |
if self.streamlit_mode:
|
| 144 |
st.plotly_chart(fig)
|
| 145 |
else:
|
|
|
|
| 149 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
| 150 |
positive_scores = [scores[i] for i in range(500) if test_labels[i] == 1]
|
| 151 |
negative_scores = [scores[i] for i in range(500) if test_labels[i] == 0]
|
|
|
|
| 152 |
fig = go.Figure()
|
|
|
|
|
|
|
| 153 |
fig.add_trace(
|
| 154 |
go.Histogram(
|
| 155 |
x=positive_scores,
|
|
|
|
| 159 |
opacity=0.75,
|
| 160 |
)
|
| 161 |
)
|
|
|
|
|
|
|
| 162 |
fig.add_trace(
|
| 163 |
go.Histogram(
|
| 164 |
x=negative_scores,
|
|
|
|
| 168 |
opacity=0.75,
|
| 169 |
)
|
| 170 |
)
|
|
|
|
|
|
|
| 171 |
fig.update_layout(
|
| 172 |
title="Score Distribution for Positive and Negative Examples",
|
| 173 |
xaxis_title="Score",
|
|
|
|
| 175 |
barmode="overlay",
|
| 176 |
legend_title="Scores",
|
| 177 |
)
|
|
|
|
|
|
|
| 178 |
if self.streamlit_mode:
|
| 179 |
st.plotly_chart(fig)
|
| 180 |
else:
|
|
|
|
| 199 |
self.visualize_roc_curve(test_scores)
|
| 200 |
self.visualize_score_distribution(test_scores)
|
| 201 |
return test_scores
|
| 202 |
+
|
| 203 |
+
def collate_fn(self, batch):
|
| 204 |
+
texts = [item["text"] for item in batch]
|
| 205 |
+
labels = torch.tensor([int(item["label"]) for item in batch])
|
| 206 |
+
encodings = self.tokenizer(
|
| 207 |
+
texts, padding=True, truncation=True, max_length=512, return_tensors="pt"
|
| 208 |
+
)
|
| 209 |
+
return encodings.input_ids, encodings.attention_mask, labels
|
| 210 |
+
|
| 211 |
+
def train(self, batch_size: int = 32, lr: float = 5e-6, num_classes: int = 2):
|
| 212 |
+
wandb.init(
|
| 213 |
+
project=self.wandb_project,
|
| 214 |
+
entity=self.wandb_entity,
|
| 215 |
+
name=f"{self.model_name}-{self.dataset_name}",
|
| 216 |
+
)
|
| 217 |
+
self.model.classifier = nn.Linear(
|
| 218 |
+
self.model.classifier.in_features, num_classes
|
| 219 |
+
)
|
| 220 |
+
self.model.num_labels = num_classes
|
| 221 |
+
self.model.train()
|
| 222 |
+
optimizer = optim.AdamW(self.model.parameters(), lr=lr)
|
| 223 |
+
data_loader = DataLoader(
|
| 224 |
+
self.train_dataset,
|
| 225 |
+
batch_size=batch_size,
|
| 226 |
+
shuffle=True,
|
| 227 |
+
collate_fn=self.collate_fn,
|
| 228 |
+
)
|
| 229 |
+
progress_bar = st.progress(0, text="Training") if self.streamlit_mode else None
|
| 230 |
+
for i, batch in track(
|
| 231 |
+
enumerate(data_loader), description="Training", total=len(data_loader)
|
| 232 |
+
):
|
| 233 |
+
input_ids, attention_mask, labels = [x.to(self.device) for x in batch]
|
| 234 |
+
outputs = self.model(
|
| 235 |
+
input_ids=input_ids, attention_mask=attention_mask, labels=labels
|
| 236 |
+
)
|
| 237 |
+
loss = outputs.loss
|
| 238 |
+
optimizer.zero_grad()
|
| 239 |
+
loss.backward()
|
| 240 |
+
optimizer.step()
|
| 241 |
+
wandb.log({"loss": loss.item()})
|
| 242 |
+
if progress_bar:
|
| 243 |
+
progress_percentage = (i + 1) * 100 // len(data_loader)
|
| 244 |
+
progress_bar.progress(
|
| 245 |
+
progress_percentage,
|
| 246 |
+
text=f"Training batch {i + 1}/{len(data_loader)}, Loss: {loss.item()}",
|
| 247 |
+
)
|
| 248 |
+
save_model(self.model, f"{self.model_name}-{self.dataset_name}.safetensors")
|
| 249 |
+
wandb.log_model(f"{self.model_name}-{self.dataset_name}.safetensors")
|
| 250 |
+
wandb.finish()
|
| 251 |
+
os.remove(f"{self.model_name}-{self.dataset_name}.safetensors")
|