Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,71 +1,37 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import requests
|
| 4 |
-
from io import BytesIO
|
| 5 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 6 |
-
from qwen_vl_utils import process_vision_info
|
| 7 |
-
|
| 8 |
-
# Check if CUDA is available and set the device accordingly
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
)
|
| 15 |
-
model = model.to(device)
|
| 16 |
|
| 17 |
-
|
| 18 |
-
processor = AutoProcessor.from_pretrained(
|
| 19 |
|
| 20 |
-
#
|
| 21 |
image_url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
|
| 22 |
response = requests.get(image_url)
|
| 23 |
-
img = Image.open(BytesIO(response.content))
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
img_resized = img.resize((
|
| 27 |
-
image_inputs = processor(images=img_resized, return_tensors="pt").to(device)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
{
|
| 32 |
-
"role": "user",
|
| 33 |
-
"content": [
|
| 34 |
-
{
|
| 35 |
-
"type": "image",
|
| 36 |
-
"image": img_resized,
|
| 37 |
-
},
|
| 38 |
-
{"type": "text", "text": "Describe this image."},
|
| 39 |
-
],
|
| 40 |
-
}
|
| 41 |
-
]
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
text = processor.apply_chat_template(
|
| 45 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 46 |
-
)
|
| 47 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 48 |
inputs = processor(
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
videos=video_inputs,
|
| 52 |
-
padding=True,
|
| 53 |
return_tensors="pt",
|
| 54 |
-
)
|
| 55 |
-
inputs = inputs.to(device) # Move inputs to the same device as the model
|
| 56 |
|
| 57 |
-
# Inference
|
| 58 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
# Decode the generated text
|
| 66 |
-
output_text = processor.batch_decode(
|
| 67 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
# Print the output
|
| 71 |
print(output_text)
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
+
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Initialize the model and processor
|
| 8 |
+
model_name = "Qwen/Qwen2-VL-2B-Instruct"
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(model_name).to(device)
|
| 12 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 13 |
|
| 14 |
+
# Load the image from URL
|
| 15 |
image_url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
|
| 16 |
response = requests.get(image_url)
|
| 17 |
+
img = Image.open(BytesIO(response.content))
|
| 18 |
|
| 19 |
+
# Ensure the image is resized and processed correctly
|
| 20 |
+
img_resized = img.resize((224, 224)) # Resize as needed (adjust based on model requirements)
|
|
|
|
| 21 |
|
| 22 |
+
# Create a prompt or text input
|
| 23 |
+
text_input = "Describe this image."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Process the image and the text input
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
inputs = processor(
|
| 27 |
+
images=img_resized,
|
| 28 |
+
text=text_input,
|
|
|
|
|
|
|
| 29 |
return_tensors="pt",
|
| 30 |
+
).to(device)
|
|
|
|
| 31 |
|
| 32 |
+
# Inference
|
| 33 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 34 |
|
| 35 |
+
# Decode the output
|
| 36 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
print(output_text)
|