Spaces:
Build error
Build error
| import torch | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| # Initialize the model and processor | |
| model_name = "Qwen/Qwen2-VL-2B-Instruct" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained(model_name).to(device) | |
| processor = AutoProcessor.from_pretrained(model_name) | |
| # Load the image from URL | |
| image_url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg" | |
| response = requests.get(image_url) | |
| img = Image.open(BytesIO(response.content)) | |
| # Automatically preprocess the image and text input using the processor | |
| text_input = "Describe this image." | |
| # The processor automatically handles resizing, normalization, and tokenization | |
| inputs = processor( | |
| images=img, | |
| text=text_input, | |
| return_tensors="pt", | |
| padding=True, # Automatically pad to match model input size | |
| ) | |
| # Check the number of tokens generated by the processor and the shape of inputs | |
| print("Input tokens:", inputs.input_ids.shape) | |
| print("Image features shape:", inputs.pixel_values.shape) | |
| # Ensure image and text are properly tokenized and features align | |
| assert inputs.input_ids.shape[1] > 0, "No tokens generated for text input!" | |
| assert inputs.pixel_values.shape[0] > 0, "No features generated for the image!" | |
| # Move inputs to the device (either GPU or CPU) | |
| inputs = {key: value.to(device) for key, value in inputs.items()} | |
| # Inference | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| # Decode the output | |
| output_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| print(output_text) | |