File size: 4,685 Bytes
dd29fa5
0d2a859
dd29fa5
 
 
 
 
 
 
 
 
 
 
 
 
9a0940b
dd29fa5
9a0940b
dd29fa5
 
 
 
 
6e95c9d
 
dd29fa5
 
6e95c9d
 
 
 
 
dd29fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e95c9d
 
dd29fa5
 
 
6e95c9d
0d2a859
dd29fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e95c9d
 
 
 
 
 
 
 
 
 
 
dd29fa5
 
 
 
 
 
 
 
 
9a0940b
dd29fa5
 
 
 
 
 
9a0940b
 
dd29fa5
 
 
 
 
 
 
 
 
 
 
 
 
af48311
dd29fa5
9a0940b
dd29fa5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
'''
Copyright 2025 Vignesh(VK)Kotteeswaran <[email protected]>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''

import numpy as np
from openvino.runtime import Core
from utils import DBPostProcess,img_decode
import cv2




class Text_Detection():



    def __init__(self, model_path):

        '''
            Args:
                mode_path(string): path of openvino xml of model
        '''

        ie = Core()

        print('\n', model_path)

        model = ie.read_model(model=model_path)
        self.compiled_model = ie.compile_model(model=model, device_name="CPU")
        self.input_layer = self.compiled_model.input(0)
        self.output_layer = self.compiled_model.output(0)
        self.show_frame = None
        self.image_shape = None
        self.limit_side_len = 736
        self.limit_type = 'min'
        self.scale= 1. / 255.
        self.mean= [0.485, 0.456, 0.406]
        self.std= [0.229, 0.224, 0.225]
        self.postprocess_detection=DBPostProcess()



    def resize_norm_img(self, img,):

        """
                resize image to a size multiple of 32 which is required by the network

                Args:
                    img(array): array with shape [h, w, c]
                return(tuple):
                    img, (ratio_h, ratio_w)
        """
        data = {}
        limit_side_len = self.limit_side_len
        h, w, c = img.shape

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
        elif self.limit_type == 'min':
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
        elif self.limit_type == 'resize_long':
            ratio = float(limit_side_len) / max(h, w)
        else:
            raise Exception('not support limit type, image ')
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)

        img=(img.astype('float32') * self.scale - self.mean ) / self.std
        img=img.transpose((2, 0, 1))

        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        data['img']=img
        data['shape_list']=[h,w,ratio_h,ratio_w]

        return data

    def predict(self, src):

        '''

            Args:
                src : either list of images numpy array or list of image filepath string

            Returns(list):
                list of bounding boxes co-ordinates of detected texts


        '''

        imgs = []
        src_imgs=[]
        shape_list=[]
        show_frames = []


        for item in src:

            if hasattr(item, 'shape'):
                preprocessed_data=self.resize_norm_img(item)
                src_imgs.append(item)

            elif isinstance(item, str):

                with open(item, 'rb') as f:
                    content = f.read()
                decoded_img=img_decode(content)
                preprocessed_data = self.resize_norm_img(decoded_img)
                src_imgs.append(decoded_img)

            else:
                return "Error: Invalid Input"

            imgs.append(np.expand_dims(preprocessed_data['img'], axis=0))
            shape_list.append(preprocessed_data['shape_list'])

            show_frames.append(self.show_frame)

        blob = np.concatenate(imgs, axis=0).astype(np.float32)

        outputs = self.compiled_model([blob])[self.output_layer]
        #print('text detection model output shape:',outputs.shape)
        outputs=self.postprocess_detection(outputs,shape_list)
        return outputs