Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 15,969 Bytes
3505baa 0085935 3505baa 0085935 3505baa 0085935 3505baa 0085935 0fb6325 5ebc1f7 775fa37 5ebc1f7 57cc5e9 775fa37 5ebc1f7 775fa37 57cc5e9 0085935 3505baa 0085935 3505baa 0085935 3505baa 0085935 3505baa 0085935 57cc5e9 0085935 57cc5e9 a7e6208 0085935 57cc5e9 0085935 57cc5e9 3505baa 0085935 3505baa 0085935 3505baa 0085935 3505baa 0085935 5ebc1f7 0085935 3505baa 57cc5e9 3505baa 9bcf92d 3505baa 0085935 3505baa 0085935 3505baa 0085935 3505baa 0085935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
from __future__ import annotations
import os, io, re, json, time, mimetypes, tempfile, string
from typing import List, Union, Tuple, Any, Iterable
from PIL import Image
import pandas as pd
import gradio as gr
import google.generativeai as genai
import requests
import pdfplumber
# ================== CONFIG ==================
DEFAULT_API_KEY = "AIzaSyBbK-1P3JD6HPyE3QLhkOps6_-Xo3wUFbs"
INTERNAL_MODEL_MAP = {
"Gemini 2.5 Flash": "gemini-2.5-flash",
"Gemini 2.5 Pro": "gemini-2.5-pro",
}
EXTERNAL_MODEL_NAME = "prithivMLmods/Camel-Doc-OCR-062825 (External)"
try:
RESAMPLE = Image.Resampling.LANCZOS
except AttributeError:
RESAMPLE = Image.LANCZOS
PROMPT_FREIGHT_JSON = """
You are an expert in air freight rate extraction and normalization.
The document contains rate information for multiple airlines.
Please analyze all content (tables, headers, notes) and return **a list of JSON objects**, each representing a separate airline.
Each airline should follow this schema:
{
"shipping_line": "...",
"shipping_line_code": "...",
"shipping_line_reason": "Why this carrier is chosen?",
"fee_type": "Air Freight",
"valid_from": "...",
"valid_to": "...",
"charges": [ ... ], # List of charge objects (see below)
"local_charges": [ ... ] # Optional local charges if available
}
Each `charges` object must follow this schema:
{
"frequency": "...",
"package_type": "...", # e.g. Carton, Pallet, Skid
"aircraft_type": "...",
"direction": "Export / Import / null",
"origin": "...",
"destination": "...",
"charge_name": "...",
"charge_code": "GCR / PER / DGR / etc.",
"charge_code_reason": "...",
"cargo_type": "...",
"currency": "...",
"transit": "...",
"transit_time": "...",
"weight_breaks": {
"M": ...,
"N": ...,
"+45kg": ...,
"+100kg": ...,
"+300kg": ...,
"+500kg": ...,
"+1000kg": ...,
"other": { key: value },
"weight_breaks_reason": "Why chosen weight_breaks?"
},
"remark": "..."
}
Each `local_charges` object:
{
"charge_name": "...",
"charge_code": "...",
"unit": "...",
"amount": ...,
"remark": "..."
}
---
### ✈️ Airline Separation Logic:
- If multiple airlines are detected in the document, separate each section and return a distinct JSON object per airline.
- Infer `shipping_line` and `shipping_line_code` from the header (e.g. "AIR CHINA CARGO (CA)" → name = "AIR CHINA CARGO", code = "CA").
- Each JSON object must include only data relevant to that airline.
---
### 💡 Date rules:
- valid_from:
- `DD/MM/YYYY` if exact
- `01/MM/YYYY` if only month/year
- `01/01/YYYY` if only year
- `UFN` if missing
- valid_to:
- exact `DD/MM/YYYY` if present
- else `UFN`
---
### 📦 Package and Surcharge Logic:
Apply these when the remark or note indicates such rules:
1. **Default case**: If no package mentioned → `"Carton"` is the default.
2. **“Carton = Pallet”**: Duplicate rates with `package_type="Pallet"`.
3. **“SKID shipment: add 10 cents (GEN & PER)”**: Add new charges with `+0.10 USD/kg` for GEN/PER, with `package_type="Pallet"` or `"Skid"`.
4. **EU vs Non-EU surcharges**: If different pallet surcharges by region → split charges accordingly.
5. **“All-in” or “inclusive of MY and SC”**: Record `FSC` and `WSC` as `local_charges` with `"NIL"` amount.
6. **Flight number is not a charge code**. Always use standard cargo code (GCR, PER, etc.).
---
### ⚙️ Other Business Rules:
- RQ / Request → "RQST"
- Combine same-rate destinations using `/`
- Always use **IATA code** for origin/destination
- Direction = Export if origin is in Vietnam (SGN, HAN, DAD), else Import
- Frequency:
- D[1-7] = day of week
- "Daily" = D1234567
- Remarks: Replace `,` with `;`
- Add meaningful `"shipping_line_reason"` and `"charge_code_reason"`
---
### 🚨 STRICT OUTPUT:
- Return **a JSON array**, where each item is a full airline object
- Do NOT return markdown or explanation
- All fields must be valid
- All numbers = numeric types
- Use `null` if value missing
"""
# ================== HELPERS ==================
import fitz # PyMuPDF
def pdf_to_images(pdf_bytes: bytes) -> list[Image.Image]:
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
pages = []
for p in doc:
pix = p.get_pixmap(dpi=200)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
pages.append(img)
return pages
def ensure_rgb(im: Image.Image) -> Image.Image:
return im.convert("RGB") if im.mode != "RGB" else im
def _read_file_bytes(upload: Union[str, os.PathLike, dict, object] | None) -> bytes:
if upload is None:
raise ValueError("No file uploaded.")
if isinstance(upload, (str, os.PathLike)):
with open(upload, "rb") as f:
return f.read()
if isinstance(upload, dict) and "path" in upload:
with open(upload["path"], "rb") as f:
return f.read()
if hasattr(upload, "read"):
return upload.read()
raise TypeError(f"Unsupported file object: {type(upload)}")
def _guess_name_and_mime(file, file_bytes: bytes) -> Tuple[str, str]:
if isinstance(file, (str, os.PathLike)):
filename = os.path.basename(str(file))
elif isinstance(file, dict) and "name" in file:
filename = os.path.basename(file["name"])
elif isinstance(file, dict) and "path" in file:
filename = os.path.basename(file["path"])
else:
filename = "upload.bin"
mime, _ = mimetypes.guess_type(filename)
if not mime:
if len(file_bytes) >= 4 and file_bytes[:4] == b"%PDF":
mime = "application/pdf"
if not filename.lower().endswith(".pdf"):
filename += ".pdf"
else:
mime = "image/png"
return filename, mime
# ================== PDF CHECK STEP ==================
def check_pdf_structure(file_bytes: bytes) -> str:
"""Kiểm tra nhanh file PDF có phải bảng nhiều cột, nhiều trang không."""
try:
with pdfplumber.open(io.BytesIO(file_bytes)) as pdf:
if len(pdf.pages) <= 2:
return "không"
table_pages = 0
for page in pdf.pages[:3]:
tables = page.find_tables()
if tables and len(tables) > 0:
table_pages += 1
if table_pages >= 1:
return "có"
text = "\n".join([(p.extract_text() or "") for p in pdf.pages[:2]])
num_tokens = sum(ch.isdigit() for ch in text)
line_count = len(text.splitlines())
if num_tokens > 100 and line_count > 20:
return "có"
return "không"
except Exception as e:
print("PDF check error:", e)
return "không"
# ================== OCR CORE (Gemini) ==================
def run_process_internal_base_v2(file_bytes, filename, mime, question, model_choice, temperature, top_p, batch_size=3):
api_key = os.environ.get("GOOGLE_API_KEY", DEFAULT_API_KEY)
if not api_key:
return "ERROR: Missing GOOGLE_API_KEY.", None
genai.configure(api_key=api_key)
model_name = INTERNAL_MODEL_MAP.get(model_choice, "gemini-2.5-flash")
model = genai.GenerativeModel(model_name=model_name,
generation_config={"temperature": float(temperature), "top_p": float(top_p)})
if file_bytes[:4] == b"%PDF":
pages = pdf_to_images(file_bytes)
else:
pages = [Image.open(io.BytesIO(file_bytes))]
user_prompt = (question or "").strip() or PROMPT_FREIGHT_JSON
all_json_results, all_text_results = [], []
previous_header_json = None
def _safe_text(resp):
try:
return resp.text
except:
return ""
for i in range(0, len(pages), batch_size):
batch = pages[i:i+batch_size]
uploaded = []
for im in batch:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
im.save(tmp.name)
up = genai.upload_file(path=tmp.name, mime_type="image/png")
up = genai.get_file(up.name)
uploaded.append(up)
context_prompt = user_prompt
resp = model.generate_content([context_prompt] + uploaded)
text = _safe_text(resp)
all_text_results.append(text)
for up in uploaded:
try:
genai.delete_file(up.name)
except:
pass
return "\n\n".join(all_text_results), None
# ================== EXTERNAL API (nếu có) ==================
def run_process_external(file_bytes, filename, mime, question, api_url, temperature, top_p):
if not api_url:
return "ERROR: Missing external API endpoint.", None
data = {"prompt": question or "", "temperature": str(temperature), "top_p": str(top_p)}
files = {"file": (filename, file_bytes, mime)}
r = requests.post(api_url, files=files, data=data, timeout=60)
if r.status_code >= 400:
return f"ERROR: External API HTTP {r.status_code}: {r.text[:200]}", None
return r.text, None
# ================== MAIN ROUTER (đã thêm STEP CHECK) ==================
def run_process(file, question, model_choice, temperature, top_p, external_api_url):
"""
Router (có bước kiểm tra PDF/table trước khi xử lý):
- Nếu PDF nhiều trang/nhiều bảng -> extract trước (pdfplumber)
- Ngược lại -> OCR trực tiếp Gemini
"""
try:
if file is None:
return "ERROR: No file uploaded.", None
file_bytes = _read_file_bytes(file)
filename, mime = _guess_name_and_mime(file, file_bytes)
# STEP 1️⃣: Check PDF structure
if mime == "application/pdf" or file_bytes[:4] == b"%PDF":
check_result = check_pdf_structure(file_bytes)
print(f"[PDF Check] {filename}: {check_result}")
if check_result == "có" and 1==2: # bỏ qua if này test thử prompt nhiều hãng
try:
print("➡️ PDF có nhiều cột/nhiều trang → dùng pdfplumber extract trước rồi Gemini.")
all_dfs = []
saved_header = None
with pdfplumber.open(io.BytesIO(file_bytes)) as pdf:
for page_idx, page in enumerate(pdf.pages, start=1):
print(f"📄 Đang xử lý trang {page_idx}...")
table = page.extract_table({
"vertical_strategy": "lines",
"horizontal_strategy": "text",
"snap_tolerance": 3,
"intersection_tolerance": 5,
})
if not table or len(table) < 2:
print(f"⚠️ Trang {page_idx}: Không phát hiện bảng hợp lệ.")
continue
header = table[0]
rows = table[1:]
# Lưu header đầu tiên
if saved_header is None:
saved_header = header
print(f"✅ Trang {page_idx}: Lưu header đầu tiên: {saved_header}")
# Nếu trang sau không có header rõ → dùng header cũ
if len(header) < len(saved_header) or "REGION" not in header[0]:
print(f"↩️ Trang {page_idx}: Không có header rõ ràng, dùng lại header trước.")
header = saved_header
rows = table
else:
saved_header = header # cập nhật header hợp lệ
if len(rows) == 0:
print(f"⚠️ Trang {page_idx}: Không có dữ liệu dưới header.")
continue
try:
df = pd.DataFrame(rows, columns=header)
all_dfs.append(df)
print(f"✅ Trang {page_idx}: {len(df)} dòng được thêm.")
except Exception as e:
print(f"❌ Lỗi tạo DataFrame ở trang {page_idx}: {e}")
if all_dfs:
final_df = pd.concat(all_dfs, ignore_index=True).dropna(how="all").reset_index(drop=True)
print(f"✅ Tổng cộng {len(final_df)} dòng được trích xuất từ PDF.")
# Xuất ra file tạm (Excel + JSON)
base_name = os.path.splitext(filename)[0]
tmp_dir = tempfile.gettempdir()
# json_path = os.path.join(tmp_dir, f"{base_name}.json")
# excel_path = os.path.join(tmp_dir, f"{base_name}.xlsx")
# final_df.to_json(json_path, orient="records", force_ascii=False, indent=2)
# final_df.to_excel(excel_path, index=False)
# print(f"✅ Xuất JSON: {json_path}")
# print(f"✅ Xuất Excel: {excel_path}")
# Convert bảng thành CSV text để Gemini đọc tiếp
table_text = final_df.to_csv(index=False)
print(f"✅ Đang Gen text từ file CSV")
question = (
f"{PROMPT_FREIGHT_JSON}\n"
"Below is the table text extracted from the PDF (CSV format):\n"
f"{table_text}\n\n"
"Please convert this into valid JSON as per the schema."
)
else:
print("⚠️ Không có bảng hợp lệ để extract bằng pdfplumber.")
except Exception as e:
print("❌ pdfplumber extract failed:", e)
# STEP 2️⃣: Route model
if model_choice == EXTERNAL_MODEL_NAME:
return run_process_external(
file_bytes=file_bytes, filename=filename, mime=mime,
question=question, api_url=external_api_url,
temperature=temperature, top_p=top_p
)
return run_process_internal_base_v2(
file_bytes=file_bytes, filename=filename, mime=mime,
question=question, model_choice=model_choice,
temperature=temperature, top_p=top_p
)
except Exception as e:
return f"ERROR: {type(e).__name__}: {str(e)}", None
# ================== UI ==================
def main():
with gr.Blocks(title="OCR Multi-Agent System") as demo:
file = gr.File(label="Upload PDF/Image")
question = gr.Textbox(label="Prompt", lines=2)
model_choice = gr.Dropdown(choices=[*INTERNAL_MODEL_MAP.keys(), EXTERNAL_MODEL_NAME],
value="Gemini 2.5 Flash", label="Model")
temperature = gr.Slider(0.0, 2.0, value=0.2, step=0.05)
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.01)
external_api_url = gr.Textbox(label="External API URL", visible=False)
output_text = gr.Code(label="Output", language="json")
run_btn = gr.Button("🚀 Process")
run_btn.click(
run_process,
inputs=[file, question, model_choice, temperature, top_p, external_api_url],
outputs=[output_text, gr.State()]
)
return demo
demo = main()
if __name__ == "__main__":
demo.launch()
|