Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| from typing import Any, Optional | |
| from transformers import TrainingArguments | |
| class IterativeSFTConfig(TrainingArguments): | |
| r""" | |
| Configuration class for the [`IterativeSFTTrainer`]. | |
| This class includes only the parameters that are specific to Iterative SFT training. For a full list of training | |
| arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this | |
| class may differ from those in [`~transformers.TrainingArguments`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| > Parameters that control the model | |
| model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
| Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` | |
| argument of the [`IterativeSFTTrainer`] is provided as a string. | |
| > Parameters that control the data preprocessing | |
| max_length (`int` or `None`, *optional*, defaults to `None`): | |
| Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated. | |
| truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
| The truncation mode to use, either `"keep_end"` or `"keep_start"`. | |
| optimize_device_cache (`bool`, *optional*, defaults to `False`): | |
| Whether to optimize accelerator cache for slightly more memory-efficient training. | |
| """ | |
| _VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs"] | |
| # Parameters whose default values are overridden from TrainingArguments | |
| logging_steps: float = field( | |
| default=10, | |
| metadata={ | |
| "help": "Log every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, " | |
| "will be interpreted as ratio of total training steps." | |
| }, | |
| ) | |
| bf16: Optional[bool] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " | |
| "architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if " | |
| "`fp16` is not set." | |
| }, | |
| ) | |
| # Parameters that control the model | |
| model_init_kwargs: Optional[dict[str, Any]] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of " | |
| "the `IterativeSFTTrainer` is provided as a string." | |
| }, | |
| ) | |
| # Parameters that control the data preprocessing | |
| max_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated." | |
| }, | |
| ) | |
| truncation_mode: str = field( | |
| default="keep_end", | |
| metadata={"help": "The truncation mode to use, either 'keep_end' or 'keep_start'."}, | |
| ) | |
| optimize_device_cache: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to optimize accelerator cache for slightly more memory-efficient training."}, | |
| ) | |
| def __post_init__(self): | |
| self.bf16 = not (self.fp16) if self.bf16 is None else self.bf16 | |
| super().__post_init__() | |
| if self.truncation_mode not in ["keep_end", "keep_start"]: | |
| raise ValueError(f"truncation_mode must be either 'keep_end' or 'keep_start', got {self.truncation_mode}") | |