Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import pytest | |
| import torch | |
| from parameterized import parameterized | |
| from transformers.utils import is_peft_available | |
| from trl.import_utils import is_diffusers_available | |
| from .testing_utils import require_diffusers | |
| if is_diffusers_available() and is_peft_available(): | |
| from trl import AlignPropConfig, AlignPropTrainer, DefaultDDPOStableDiffusionPipeline | |
| def scorer_function(images, prompts, metadata): | |
| return torch.randn(1) * 3.0, {} | |
| def prompt_function(): | |
| return ("cabbages", {}) | |
| class AlignPropTrainerTester(unittest.TestCase): | |
| """ | |
| Test the AlignPropTrainer class. | |
| """ | |
| def setUp(self): | |
| training_args = AlignPropConfig( | |
| num_epochs=2, | |
| train_gradient_accumulation_steps=1, | |
| train_batch_size=2, | |
| truncated_backprop_rand=False, | |
| mixed_precision=None, | |
| save_freq=1000000, | |
| ) | |
| pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" | |
| pretrained_revision = "main" | |
| pipeline_with_lora = DefaultDDPOStableDiffusionPipeline( | |
| pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=True | |
| ) | |
| pipeline_without_lora = DefaultDDPOStableDiffusionPipeline( | |
| pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=False | |
| ) | |
| self.trainer_with_lora = AlignPropTrainer(training_args, scorer_function, prompt_function, pipeline_with_lora) | |
| self.trainer_without_lora = AlignPropTrainer( | |
| training_args, scorer_function, prompt_function, pipeline_without_lora | |
| ) | |
| def tearDown(self) -> None: | |
| gc.collect() | |
| def test_generate_samples(self, use_lora): | |
| trainer = self.trainer_with_lora if use_lora else self.trainer_without_lora | |
| output_pairs = trainer._generate_samples(2, with_grad=True) | |
| self.assertEqual(len(output_pairs.keys()), 3) | |
| self.assertEqual(len(output_pairs["images"]), 2) | |
| def test_calculate_loss(self, use_lora): | |
| trainer = self.trainer_with_lora if use_lora else self.trainer_without_lora | |
| sample = trainer._generate_samples(2) | |
| images = sample["images"] | |
| prompts = sample["prompts"] | |
| self.assertTupleEqual(images.shape, (2, 3, 128, 128)) | |
| self.assertEqual(len(prompts), 2) | |
| rewards = trainer.compute_rewards(sample) | |
| loss = trainer.calculate_loss(rewards) | |
| self.assertTrue(torch.isfinite(loss.cpu())) | |