Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # ] | |
| # /// | |
| """ | |
| Full training: | |
| python examples/scripts/reward_modeling.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
| --dataset_name trl-lib/ultrafeedback_binarized \ | |
| --output_dir Qwen2-0.5B-Reward \ | |
| --per_device_train_batch_size 8 \ | |
| --num_train_epochs 1 \ | |
| --gradient_checkpointing True \ | |
| --learning_rate 1.0e-5 \ | |
| --eval_strategy steps \ | |
| --eval_steps 50 \ | |
| --max_length 2048 | |
| LoRA: | |
| python examples/scripts/reward_modeling.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
| --dataset_name trl-lib/ultrafeedback_binarized \ | |
| --output_dir Qwen2-0.5B-Reward-LoRA \ | |
| --per_device_train_batch_size 8 \ | |
| --num_train_epochs 1 \ | |
| --gradient_checkpointing True \ | |
| --learning_rate 1.0e-4 \ | |
| --eval_strategy steps \ | |
| --eval_steps 50 \ | |
| --max_length 2048 \ | |
| --use_peft \ | |
| --lora_r 32 \ | |
| --lora_alpha 16 | |
| """ | |
| import warnings | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser | |
| from trl import ( | |
| ModelConfig, | |
| RewardConfig, | |
| RewardTrainer, | |
| ScriptArguments, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| setup_chat_format, | |
| ) | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser((ScriptArguments, RewardConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
| training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | |
| ################ | |
| # Model & Tokenizer | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| use_cache=False if training_args.gradient_checkpointing else True, | |
| torch_dtype=torch_dtype, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True | |
| ) | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
| ) | |
| # Align padding tokens between tokenizer and model | |
| model.config.pad_token_id = tokenizer.pad_token_id | |
| # If post-training a base model, use ChatML as the default template | |
| if tokenizer.chat_template is None: | |
| model, tokenizer = setup_chat_format(model, tokenizer) | |
| if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS": | |
| warnings.warn( | |
| "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs" | |
| " Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.", | |
| UserWarning, | |
| ) | |
| ############## | |
| # Load dataset | |
| ############## | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| ########## | |
| # Training | |
| ########## | |
| trainer = RewardTrainer( | |
| model=model, | |
| processing_class=tokenizer, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| trainer.train() | |
| ############################ | |
| # Save model and push to Hub | |
| ############################ | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.eval_strategy != "no": | |
| metrics = trainer.evaluate() | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |