Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # "math-verify", | |
| # "latex2sympy2_extended", | |
| # ] | |
| # /// | |
| """ | |
| pip install math_verify | |
| # For Qwen/Qwen2.5-VL-3B-Instruct | |
| accelerate launch \ | |
| --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ | |
| examples/scripts/grpo_vlm.py \ | |
| --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
| --output_dir grpo-Qwen2.5-VL-3B-Instruct \ | |
| --learning_rate 1e-5 \ | |
| --gradient_checkpointing \ | |
| --torch_dtype bfloat16 \ | |
| --max_prompt_length 2048 \ | |
| --max_completion_length 1024 \ | |
| --use_vllm \ | |
| --vllm_mode colocate \ | |
| --use_peft \ | |
| --lora_target_modules "q_proj", "v_proj" \ | |
| --log_completions | |
| # For HuggingFaceTB/SmolVLM2-2.2B-Instruct | |
| pip install num2words | |
| accelerate launch \ | |
| --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ | |
| examples/scripts/grpo_vlm.py \ | |
| --model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \ | |
| --output_dir grpo-SmolVLM2-2.2B-Instruct \ | |
| --learning_rate 1e-5 \ | |
| --torch_dtype bfloat16 \ | |
| --max_prompt_length 2048 \ | |
| --max_completion_length 1024 \ | |
| --use_peft \ | |
| --lora_target_modules "q_proj", "v_proj" \ | |
| --log_completions \ | |
| --per_device_train_batch_size 1 \ | |
| --gradient_accumulation_steps 2 \ | |
| --num_generations 2 \ | |
| --bf16 True | |
| """ | |
| import torch | |
| from datasets import load_dataset | |
| from latex2sympy2_extended import NormalizationConfig | |
| from math_verify import LatexExtractionConfig, parse, verify | |
| from trl import ( | |
| GRPOConfig, | |
| GRPOTrainer, | |
| ModelConfig, | |
| ScriptArguments, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| from trl.rewards import think_format_reward | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, GRPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| ################ | |
| # Model & Processor | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| training_args.model_init_kwargs = dict( | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train") | |
| dataset = dataset.train_test_split(test_size=100, seed=42) | |
| SYSTEM_PROMPT = ( | |
| "A conversation between user and assistant. The user asks a question, and the assistant solves it. The " | |
| "assistant first thinks about the reasoning process in the mind and then provides the user with the answer. " | |
| "The reasoning process and answer are enclosed within <think></think> tags, i.e., <think>\nThis is my " | |
| "reasoning.\n</think>\nThis is my answer." | |
| ) | |
| def make_conversation(example): | |
| prompt = [ | |
| {"role": "system", "content": SYSTEM_PROMPT}, | |
| {"role": "user", "content": example["problem"]}, | |
| ] | |
| return {"prompt": prompt} | |
| dataset = dataset.map(make_conversation) | |
| # Filter have big images | |
| def filter_big_images(example): | |
| image = example["image"] | |
| return image.size[0] < 512 and image.size[1] < 512 | |
| dataset = dataset.filter(filter_big_images) | |
| def convert_to_rgb(example): | |
| image = example["image"] | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| example["image"] = image | |
| return example | |
| dataset = dataset.map(convert_to_rgb) | |
| train_dataset = dataset["train"] | |
| eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None | |
| ################ | |
| # Reward Function for Training | |
| ################ | |
| def accuracy_reward(completions, solution: list[str], **kwargs): | |
| """Reward function that checks if the completion matches the ground truth. | |
| - If both gold and prediction are parseable β use math verification. | |
| - If not parseable β compare as normalized text. | |
| """ | |
| rewards = [] | |
| contents = [completion[0]["content"] for completion in completions] | |
| for content, sol in zip(contents, solution): | |
| try: | |
| gold_parsed = parse(sol, extraction_mode="first_match") | |
| except Exception: | |
| gold_parsed = [] | |
| if len(gold_parsed) != 0: | |
| # Try parsing predicted answer too | |
| try: | |
| answer_parsed = parse( | |
| content, | |
| extraction_config=[ | |
| LatexExtractionConfig( | |
| normalization_config=NormalizationConfig( | |
| nits=False, | |
| malformed_operators=False, | |
| basic_latex=True, | |
| boxed="all", | |
| units=True, | |
| ), | |
| boxed_match_priority=0, | |
| try_extract_without_anchor=False, | |
| ) | |
| ], | |
| extraction_mode="first_match", | |
| ) | |
| reward = float(verify(gold_parsed, answer_parsed)) | |
| except Exception as e: | |
| print(f"verify failed: {e}, answer: {content}, gold: {sol}") | |
| reward = None | |
| else: | |
| # fallback to text match | |
| reward = float(content.strip().lower() == sol.strip().lower()) | |
| rewards.append(reward) | |
| return rewards | |
| ################ | |
| # Training | |
| ################ | |
| trainer = GRPOTrainer( | |
| model=model_args.model_name_or_path, | |
| args=training_args, | |
| reward_funcs=[think_format_reward, accuracy_reward], | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |