Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "vllm", | |
| # ] | |
| # /// | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from datasets import load_dataset | |
| from transformers import HfArgumentParser | |
| from vllm import LLM, SamplingParams | |
| from trl import HfPairwiseJudge, OpenAIPairwiseJudge | |
| """ | |
| Examples: | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --num_examples 1000 | |
| Model win rate: 31.40% | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000 | |
| Model win rate: 51.60% | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000 | |
| Model win rate: 51.20% | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --num_examples 1000 | |
| Model win rate: 46.30% | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000 | |
| Model win rate: 52.50% | |
| python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-4o-mini --num_examples 1000 | |
| Model win rate: 63.00% | |
| """ | |
| class ScriptArguments: | |
| r""" | |
| Arguments for the script. | |
| Args: | |
| model_name_or_path (`str`): | |
| Model name or path to the model to evaluate. | |
| judge_model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3-70B-Instruct"`): | |
| Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or | |
| 'meta-llama/Meta-Llama-3-70B-Instruct'. | |
| num_examples (`int` or `None`, *optional*, defaults to `None`): | |
| Number of examples to evaluate. | |
| """ | |
| model_name_or_path: str = field(metadata={"help": "Model name or path to the model to evaluate."}) | |
| judge_model: str = field( | |
| default="meta-llama/Meta-Llama-3-70B-Instruct", | |
| metadata={ | |
| "help": "Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or " | |
| "'meta-llama/Meta-Llama-3-70B-Instruct'." | |
| }, | |
| ) | |
| num_examples: Optional[int] = field(default=None, metadata={"help": "Number of examples to evaluate."}) | |
| # Parse the arguments | |
| parser = HfArgumentParser(ScriptArguments) | |
| script_args = parser.parse_args_into_dataclasses()[0] | |
| # Load the dataset | |
| dataset = load_dataset("trl-lib/tldr", split="validation") | |
| if script_args.num_examples is not None: | |
| dataset = dataset.select(range(script_args.num_examples)) | |
| # Extract the prompts and reference completions | |
| prompts = dataset["prompt"] | |
| reference_completions = dataset["completion"] | |
| # Generate the model completions | |
| sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=200) # very generous max token length | |
| llm = LLM(model=script_args.model_name_or_path, tensor_parallel_size=1) | |
| outputs = llm.generate(prompts, sampling_params) | |
| model_completions = [output.outputs[0].text.strip() for output in outputs] | |
| # Judge the outputs | |
| if "gpt" in script_args.judge_model: | |
| judge = OpenAIPairwiseJudge(script_args.judge_model) | |
| else: | |
| judge = HfPairwiseJudge(script_args.judge_model) | |
| completions = [[c0, c1] for c0, c1 in zip(reference_completions, model_completions)] | |
| best_idxs = judge.judge(prompts, completions) | |
| model_win_rate = best_idxs.count(1) / len(best_idxs) | |
| print(f"Model win rate: {model_win_rate * 100:.2f}%") | |